浏览全部资源
扫码关注微信
1..海南科技职业大学机电工程学院,海口 571126
2..上海工程技术大学纺织服装学院,上海 201620
3..中国产业用纺织品行业协会,北京 100013
4..嘉兴学院材料与纺织工程学院,嘉兴 314001
5..东华大学机械工程学院,上海 201620
Published:20 February 2024,
Received:24 May 2023,
Accepted:26 June 2023
扫 描 看 全 文
引用:孙光武, 韩慧敏, 李冠志, 韩万里, 高伟洪, 陈凯凯, 王新厚. 熔喷纤维动力学理论及实验研究. 高分子通报, 2024, 37(2), 182–204
Citation: Sun, G. W.; Han, H. M.; Li, G. Z.; Han, W. L.; Gao, W. H.; Chen, K. K. Wang, X. H. Overview of the fiber dynamics and experiment in the melt blowing. Polym. Bull. (in Chinese), 2024, 37(2), 182–204
引用:孙光武, 韩慧敏, 李冠志, 韩万里, 高伟洪, 陈凯凯, 王新厚. 熔喷纤维动力学理论及实验研究. 高分子通报, 2024, 37(2), 182–204 DOI: 10.14028/j.cnki.1003-3726.2024.23.176.
Citation: Sun, G. W.; Han, H. M.; Li, G. Z.; Han, W. L.; Gao, W. H.; Chen, K. K. Wang, X. H. Overview of the fiber dynamics and experiment in the melt blowing. Polym. Bull. (in Chinese), 2024, 37(2), 182–204 DOI: 10.14028/j.cnki.1003-3726.2024.23.176.
熔喷是一种采用高温高速气流吹喷聚合物熔体形成微米级纤维的非织造工艺。近年来研究者已对纤维在熔喷工艺中的动力学机理进行了大量的理论和实验研究。而且最近亦有较多综述类文章对气流场分布规律、纤维细化机理、模头改进等研究进行了总结,却很少提到理论方程的演变和机理研究性实验的改进。因此,本文针对熔体在高温高速气流场中的动力学理论的发展进行了全面综述,并分析了气流场中纤维成形和网帘上纤维网沉积模型的演变。此外,还综述了纤维和纤维网成形机制的在线和离线探究实验。基于本文的综述将可为熔喷工艺优化、设备改进、纤维/纤网均匀性控制等方面提供理论依据和实验方案,从而进一步提高熔喷非织造产品质量。
Melt blowing (MB) is a nonwoven fabrication process in which polymer melt is blown by high-temperature and high-speed air to form micro-nano fibers. Over the past decades
a considerable amount of theoretical and experimental research has been conducted on the mechanisms of fiber dynamics during MB. Although some studies involving air flow field distribution
fiber thinning mechanism
and die improvement have been summarized by recently published review articles
the evolution of the theoretical equations and improvements in the mechanism experiments are rarely mentioned. Therefore
this work presents a comprehensive overview of the research on fiber dynamics in high-temperature and high-speed air. The evolution of the fiber formation and fibrous web formation models were analyzed. In addition
online and offline experiments used to demonstrate fiber formation and fibrous web mechanisms also are reviewed in our work. The fundamental studies reviewed in this paper contributed noteworthy findings in controlling the fiber and web uniformity
improving MB instrument and process
thereby enhancing the MB product quality.
熔喷微米级纤维非织造气流场纤网
Melt blowingMicron fiberNonwovenAirflowFibrous web
Wente, V. A. Superfine thermoplastic fibers. Ind. Eng. Chem., 1956, 48, 1342–1436.
Ziabicki, A.; Kedzierska, K. Mechanical aspects of fibre spinning process in molten polymers part I: stream diameter and velocity distribution along the spinning way. Kolloid-Zeitschrift., 1960, 171, 51–61.
Ziabicki, A.; Kedzierska, K. Mechanical aspects of fibre spinning process in molten polymers part II: stream broadening after the exit from the channel of spinneret. Kolloid-Zeitschrift., 1960, 171, 111–119.
Ziabicki, A. Mechanical aspects of fibre spinning process in molten polymers part iii: tensile force and stress. Kolloid-Zeitschrift., 1961, 175, 14–27.
Kase, S.; Matsuo, T. Studies on melt spinning fundamental equations on the dynamics of melt spinning. J. Polym Sci., 1965, 3(7), 2541–2554.
Matovich, M. A.; Pearson, J. R. A. Spinning a molten threadline: steady state isothermal viscous flows. Ind. Eng. Chem. Fund., 1969, 8(3), 512–520.
Denn, M. M.; Petrie, C. J. S.; Avenas, P. Mechanics of steady spinning of a viscoelastic liquid. AIChE J., 1975, 21(4), 791–799.
Fisher, R. J., Denn, M. M. A Theory of isothermal melt spinning and draw resonance. AIChE J., 1976, 22(6), 236–246.
Gagon, D. K.; Denn M. M. Computer simulation of steady polymer melt spinning. Polym. Eng. Sci., 1981, 21(13), 844–853.
Uyttendaele, M. A. J.; Shambaugh, R. L. Melt-blowing: general equation development and experiment verification. AIChE J., 1990, 36(2), 175–186.
Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B. Meltblowing: i-basic physical mechanisms and threadline model. J. Appl. Phys., 2010, 108(3), 034912.
Yarin, A. L.; Sinha-Ray, S.; Pourdeyhimi, B. Meltblowing: ii-linear and nonlinear waves on viscoelastic polymer jets. J. Appl. Phys., 2010, 108(3), 034913.
Zeng, Y. C.; Sun, Y. F.; Wang, X. H. Numerical approach to modeling fiber motion during melt blowing. J. Appl. Polym. Sci., 2011, 119(4), 2112–2123.
Sun, Y. F.; Zeng, Y. C.; Wang, X. H. Three-dimensional model of whipping motion in the processing of microfibers. Ind. Eng. Chem. Res., 2011, 50(2), 1099–1109.
Matsui, M. Air drag on a continuous filament in melt spinning. Trans. Soc. Rheol., 1976, 20(3), 465–473.
Majumdar, B.; Shambaugh, R. L. Air drag on filaments in the melt blowing process. J. Rheol., 1990, 34(4), 591–601.
Middleman, S. Fundamentals of Polymer Processing. New York: McGraw-Hill College, 1977, 123–154.
Phan-Thien, N. A nonlinear network viscoelastic model. J. Rheol., 1978, 22(3), 259–283.
Ziabicki, A.; Kawai, H. High-speed Fiber Spinning: Science and Engineering Aspects. New York: Wiley, 1985, 123–168.
Ishizuka, O.; Koyama, K.; Nokubo, H. Elongational viscosity in the isothermal melt spinning of poly-propylene. Polymer., 1980, 21(6), 691–698.
Chen, T.; Huang, X. Modeling polymer air drawing in the melt blowing nonwoven process. Text. Res. J., 2003, 73(7), 651–654.
Chen, T.; Huang, X. Air drawing of polymers in the melt blowing nonwoven process: mathematical modelling. Model. Simul. Mater. Sci. Eng., 2004, 12(3), 381–388.
Chen, T.; Li, L.; Huang, X. Fiber diameter of polybutylene terephthalate melt-blown nonwovens. J. Appl. Polym. Sci., 2005, 97(4), 1750–1752.
Chen, T., Wang, X., Huang, X. Effects of processing parameters on the fiber diameter of melt blown nonwoven fabrics. Text. Res. J., 2005, 75(1), 76–80.
Zhao, B. Numerical modeling and experimental investigation of fiber diameter of melt blowing nonwovenweb. Int. J. Cloth. Sci. Tech., 2015, 27(1): 91–98.
Rovère, A. D.; Shambaugh, R. L. Melt-spun hollow fibers: modeling and experiments. Polym. Eng. Sci., 2001, 41(7), 1206–1219.
Jarecki, L.; Ziabicki, A. Mathematical modelling of the pneumatic melt spinning of isotactic polypropylene. part ii. Dynamic model of melt blowing. Fibres. Text. East. Eur., 2008, 16(5), 17–24.
Nakamura, K.; Katayama, K.; Amano, T. Some aspects of nonisothermal crystallization of polymers. Ⅱ. Consideration of the isokinetic condition. J. Appl. Polym. Sci., 1973, 17, 1031.
Ziabicki, A. Crystallization of polymers in variable external conditions. Colloid. Polym. Sci., 1996, 274(3), 209–217.
Jarecki, L.; Ziabicki, A.; Blim, A. Dynamics of hot-tube spinning from crystallizing polymer melts. Comput. Theor. Polym. Sci., 2000, 10 (12), 63–72.
Jarecki, L.; Ziabicki, A.; Lewandowski, Z.; Blim, A. Dynamics of air drawing in the melt blowing of nonwovens from isotactic polypropylene by computer modeling. J. Appl. Polym. Sci., 2011, 119, 53–65.
Jarecki, L.; Lewandowski, Z. Mathematical modelling of the pneumatic melt spinning of isotactic polypropylene. Part iii. Computations of the process dynamics. Fibres. Text. East. Eur., 2009, 17(1), 75–80.
Shambaugh, B. R.; Papavassiliou, D. V.; Shambaugh, R. L. Next-generation modeling of melt blowing. Ind. Eng. Chem. Res., 2011, 50(21), 12233–12245.
Coppla, S.; Grizzuti, N. Microrheological modeling of flow-induced crystallization. Macromol., 2001, 34, 5030.
Zheng, R.; Kennedy, P. K.A model for post-flow induced crystallization: general equations and predictions. J. Rheol., 2004(48), 823–842.
Zuidema, H. Flow induced crystallization of polymers. Eindhoven: Eindhoven University of Technology, 2000: 18–39.
Sun, G.; Song, J.; Xu, L; Wang, X. Numerical modelling of microfibers formation and motion during melt blowing. J. Text. Inst., 2018, 109(3), 300–306.
Narasimhan, K. M.; Shambaugh, R. L. The melt blowing of polyolefins. Soc. Rheol. Meet., 1987, 79–106.
Ju, Y. D.; Shambaugh, R. L. Air drag on fine filaments at oblique and normal angles to the air stream. Polym. Eng. Sci., 1994, 34(12), 958–964.
Rao, R. S.; Shambaugh, R. L. Vibration and stability in the melt blowing process. Ind. Eng. Chem. Res., 1993, 32(12), 3100–3111.
Andrews, E. H. Cooling of a spinning threadline. J. Appl. Phys., 1959, 10 (l), 39–43.
Morgan, V. T.The overall convective heat transfer from smooth circular cylinders. In: Irvine, T. F.; Hartnett, J. P., eds. Advances in Heat Transfer. New York. San Francisco. London: Academic Press, 1975, 11, 199–264.
Marla, V. T.; Shambaugh, R. L. Three-dimensional model of the melt-blowing process. Ind. Eng. Chem. Res., 2003, 42(26), 6993–7005.
Marla V. T.; Shambaugh R. L. Modeling of the melt blowing performance of slot die. Ind. Eng. Chem. Res., 2004, 43, 2789–2797.
Marla, V. T.; Shambaugh, R. L.; Papavassiliou, D. V. Modeling the melt blowing of hollow fibers. Ind. Eng. Chem. Res., 2006, 45, 407–415.
Yamamoto, S.; Matsuoka, T. A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys., 1993, 98(1), 644–650.
Zeng, Y. C.; Yu, C. W. Numerical simulation of fiber motion in the nozzle of an air-jet spinning machine. Text. Res. J., 2004, 74(2), 117–122.
Wang, X.; Ke, Q. Computational simulation of the fiber movement in the melt-blowing process. Ind. Eng. Chem. Res. 2005, 44(11), 3912–3917.
Wu, L.; Chen, T. A generalized model for the melt blowing nonwoven process. Int. J. Nonlin. Sci. Num. Simul., 2010, 11, 281–285.
Wu, L.; Huang, D.; Chen, T. Modeling the nanofiber fabrication with the melt blowing annular die. Matéria (Rio de Janeiro), 2014, 19(4), 377–381.
Han, W.; Wang, X. Modeling melt blowing fiber with different polymer constitutive equations. Fibers. Polym., 2016, 17(1), 74–79.
Han, W.; Xie, S.; Shi, J.; Wang, X. Study on airflow field and fiber motion with new melt blowing die. Polym. Eng. Sci., 2019, 59(6), 1182–1189.
Xie, S.; Zeng, Y.; Han, W.; Jiang, G. An improved lagrangian approach for simulating fiber whipping in slot-die melt blowing. Fibers. Polym., 2017, 18(3), 525–532.
Chen, H.; Chen, T.; Wu, L. A lagrange type polymer drawing model of the melt blowing nonwoven process. Appl. Mech. Mater., 2012, 148-149, 465-469.
Tan D. H.; Zhou, C.; Ellison, C. J.; Kumar, S.; Macosko C. W.; Bates, F. S. Meltblown fibers: influence of viscosity and elasticity on diameter distribution. J. Non-Newtonian Fluid Mech., 2010, 165, 892–900.
Zhou, C.; Tan D. H.; Janakiraman, A. P.; Kumar, S. Modeling the melt blowing of viscoelastic materials. Chem. Eng. Sci., 2011, 66(18), 4172–4183.
Entov, V. M.; Yarin, A. L. The dynamics of thin liquid jets in air. J. Fluid Mech., 1984, 140, 91–111.
Ghosal, A.; Chen, K.; Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi B. Modeling polymer crystallization kinetics in the meltblowing process. Ind. Eng. Chem. Res., 2020, 59(1), 399–412.
Chung, C.; Kumar, S. Onset of whipping in the melt blowing process. J. Non-Newtonian. Fluid. Mech., 2013, 192, 37–47.
Sun, G.; Yang, J.; Sun, X.; Wang, X. Simulation and modeling of micro-fibrous web formation in melt blowing. Ind. Eng. Chem. Res., 2016, 55(18), 5431–5437.
Sun, G.; Sun, X.; Wang, X. Study on uniformity of a melt-blown fibrous web based on an image analysis technique. e-Polymers., 2017, 17(3), 211–214.
Barnes, G.; Woodcock, R. Liquid rope-coil effect. Am. J. Phys., 1958, 26(4), 205–209.
Taylor, G. I.Instability of jets, threads, and sheets of viscous fluid. In: Hetényi, M.; Vincenti, W.G., eds. Applied Mechanics: International Union of Theoretical and Applied Mechanics. Berlin: Springer, 1969, 382–395.
Hearle, J. W. S.; Sultan M. A. I.; Govender, S. The form taken by threads laid on a moving belt. Part I: experimental study. J. Text. Inst., 1976, 67(11), 373–376.
Hearle, J. W. S.; Sultan M. A. I.; Govender, S. The form taken by threads laid on a moving belt. Part III: comparison of Materials. J. Text. Inst., 1976, 67(11), 382–386.
Hearle, J. W. S.; Sultan M. A. I.; Govender, S. The form taken by threads laid on a moving belt. Part II: mechanisms and theory. J. Text. Inst., 1976, 67(11), 377–381.
Maleki, M.; Habibi, M.; Golestanian, R.; Ribe, N. M.; Bonn, D.; Liquid rope coiling on a solid surface. Phys. Rev. Lett., 2004, 93(21), 214502.
Griffiths, R. W.; Turner, J. S. Folding of viscous plumes impinging on a density or viscosity interface. Geophys. J. Int., 1988, 95(2), 397–419.
Tchavdarov, B.; Yarin, A. L.; Radev, S. Buckling of thin liquid jets. J. Fluid. Mech. 1993, 253, 593–615.
Mahadevan, L.; Keller, J. B. Coiling of flexible ropes. Proc. R. Soc. Lond. A., 1996, 452, 1679–1694.
Mahadevan, L.; Ryu, W. S.; Samuel, A. D. T. Fluid “rope trick” investigated. Nature. 1998, 392(6672), 140.
Habibi, M.; Ribe, N. M.; Bonn, D. Coiling of elastic ropes. Phys. Rev. E., 2007, 99, 016219.
Habibi, M.; Najafi, J.; Ribe, N. M. Pattern formation in a thread falling onto a moving belt: an “elastic sewing machine”. Phys. Rev. E., 2011, 84(1), 016219.
Chiu-Webster, S.; Lister, J. R. The fall of a viscous thread onto a moving surface: a “fluid-mechanical sewing machine”. J. Fluid. Mech., 2006, 569, 89–111.
Ribe, N. M.; Lister, J. R. Stability of a dragged viscous thread: onset of “stitching” in a fluid-mechanical “sewing machine”. Phys. Fluid., 2006, 18(12), 124105.
Mohammad, K. J.; Fang, D.; Jungseock, J.; Eitan, G.; Pedro, M. R. Coiling of elastic rods on rigid substrates. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(41), 14663–14668.
Mohammad, K. J.; Pedro, M. R. Pattern morphology in the elastic sewing machine. Extreme. Mech. Lett., 2014, 1, 76–82.
Battocchio, F.; Sutcliffe, M. P. F. Modelling fibre laydown and web uniformity in nonwoven fabric. Model. Simul. Mater. Sci. Eng., 2017, 25(3), 035006–035029.
Sinha-Ray, S.; Yarin, A. L.; Pourdeyhimi, B. Prediction of angular and mass distribution in meltblown polymer lay-down. Polymer., 2013, 54, 860–872.
Yarin, A. L.; Sinha-Ray, S.; Pourdeyhimi, B. Meltblowing: multiple polymer jets and fiber-size distribution and lay-down patterns. Polymer., 2011, 52, 2929–2938.
Ghosal, A.; Sinha-Ray, S.Yarin, A. L.; Pourdeyhimi, B. Numerical prediction of the effect of uptake velocity on three dimensional structure, porosity and permeability of meltblown nonwoven laydown. Polymer., 2016, 85, 19–27.
Chhabra, R.; Shambaugh, R. L. Probabilistic model development of web structure formation in the melt blowing process. Int. Nonwovens. J., 2004, 13(3), 24–34.
Götz, T.; Klar, A.; Marheineke, N.; Wegener, R. A stochastic model and associated fokker–planck equation for the fiber lay-down process in nonwoven production processes. SIAM. J. Appl. Math., 2007, 67(6), 1704–1717.
Bonilla, L. L.; Götz, T.; Klar, A.; Marheineke, N.; Wegener, R. Hydrodynamic limit of a fokker–planck equation describing fiber lay-down processes. SIAM. J. Appl. Math., 2008, 68(3), 648–665.
Marheineke, N.; Wegener, R. Fiber dynamics in turbulent flows: general modeling framework. SIAM. J. Appl., Math. 2006, 66(5), 1703–1726.
Marheineke, N.; Wegener, R. Fiber dynamics in turbulent flows: specific taylor drag. SIAM. J. Appl. Math., 2007, 68, 1–23.
Marheineke, N.; Wegener, R. Modeling and application of a stochastic drag for fibers in turbulent. Int. J. Multiph., Flow. 2011, 37(2), 136–148.
Klar, A.; Maringer, J.; Wegener, R. A 3D model for fiber lay-down in nonwoven production processes. Math. Models Methods Appl. Sci., 2012, 5(1), 97–112.
Kolb, M.; Savov, M.; Wubker, A. (Non-) Ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal., 2013, 45(1), 1–13.
Bonilla, L. L.; Klar, A.; Martin, S. Higher-order averaging of fokker--planck equations for nonlinear fiber lay-down processes. SIAM. J. Appl. Math., 2014, 74(2), 366–391.
Bouin, E.; Hoffmann, F.; Mouhot, C. Exponential decay to equilibrium for a fiber lay-down process on a moving conveyor belt. SIAM J. Math. Anal., 2017, 49(4), 3233–3251.
Borsche, R.; Klar, A.; Nessler, C.; Roth, A.; Tse, O. A retarded mean-field approach interacting fiber structures. Multiscale. Model. Simul., 2017, 15(3), 1130–1154.
Wieland, M.; Arne, W.; Marheineke, N.; Wegener, R. Melt-blowing of viscoelastic jets in turbulent airflows: stochastic modeling and simulation. Appl. Math. Model., 2019, 76, 558–577.
Wieland, M.; Arne, W.; Marheineke, N.; Wegener, R. Model hierarchy of upper-convected maxwell models with regard to simulations of melt-blowing processes. Proc. Appl. Math. Mech., 2019, 19(1), e201900018.
Chhabra, R.; Shambaugh, R. L. Experimental measurements of fiber threadline vibrations in the melt-blowing process. Ind. Eng. Chem. Res., 1996, 35(11), 4366–4374.
Moore, E. M.; Papavassiliou, D. V.; Shambaugh, R. L. Air velocity, air temperature, fiber vibration and fiber diameter measurements on a practical melt blowing die. Int. Nonwovens J., 2004, 13(3): 43–53.
Beard, J. H.; Shambaugh, R. L.; Shambaugh, B. R.; Schmidtke, D. W. On-line measurement of fiber motion during melt blowing. Ind. Eng. Chem. Res., 2007, 46(22), 7340–7352.
Xie, S.; Zeng, Y. Online measurement of fiber whipping in the melt-blowing process. Ind. Eng. Chem. Res., 2013, 52: 2116–2122.
Xie, S.; Zheng, Y.; Zeng, Y. Influence of die geometry on fiber motion and fiber attenuation in the melt-blowing process. Ind. Eng. Chem. Res., 2014, 53, 12866–12871.
Xie, S.; Zeng, Y. C. Fiber spiral motion in a swirl die melt-blowing process. Fibers. Polym., 2014, 15(3), 553–559.
Xie, S.; Han, W.; Xu, X.; Jiang, G.; Shentu, B. Lateral diffusion of a free air jet in slot-die melt blowing for microfiber whipping. Polymer., 2019, 11(5), 788–801.
Shambaugh, R. L. A macroscopic view of the melt-blowing process for producing microfibers. Ind. Eng. Chem. Res., 1988, 27(12), 2363–2372.
Benavides, R. E.; Jana, S, C.; Reneker, D. H. Role of liquid jet stretching and bending instability in nanofiber formation by gas jet method. Macromolecules, 2013, 46(15), 6081–6090.
Bresee, R. R. Fiber motion near the collector during melt blowing part 1: general considerations. Int. Nonwovens. J., 2002, 11(2), 27–34.
Bresee R. R.; Qureshi, U. A. Fiber motion near the collector during melt blowing: part 2-fly formation. J. Eng. Fibers Fabr., 2002, 11(3), 21–27.
Bansal, V.; Shambaugh, R. L. On-line determination of diameter and temperature during melt blowing of polypropylene. Ind. Eng. Chem. Res., 1998, 37(5), 1799–1806.
Marla, V. T.; Shambaugh, R. L.; Papavassiliou, D. V. Online measurement of fiber diameter and temperature in the melt-spinning and melt-blowing processes. Ind. Eng. Chem. Res., 2009, 48(18), 8736–8744.
Yin, H.; Yan, Z.; Ko, W.; Bresee, R. R. Fundamental description of the melt blowing process. Int. Nonwovens. J., 2000, 9(4), 25–28.
Xie, S.; Zeng, Y. C. A geometry method for calculating the fiber diameter reduction in melt blowing. Adv. Mater. Res., 2014, 893: 87–90.
Hamza, A. A.; Fouda, I. M.; El-Farhaty, K. A.; Badawy, Y. K. Production of polyethylene fibers and their optical properties and radial differences in orientation. Text. Res. J., 1980, 50 (10), 592–600.
Presby, H. M. Refractive index and diameter measurements of unclad optical fibers. J. Opt. Soc. Am., 1974, 64, 280–284.
Wilkes, J. M. Calculating fiber index of refractive from laser back-scattering data. Text. Res. J., 1982, 52 (7), 481–482.
Wu T. T.; Shambaugh R. L. Characterization of the melt blowing process with laser doppler velocimetry. Ind. Eng. Chem. Res., 1992, 31(1), 379–389.
Moore, E. M.; Shambaugh, R. L. ; Papavassiliou, D. V. Ensemble laser diffraction for online measurement of fiber diameter distribution during the melt blowing process. Int. Nonwovens. J., 2004, 13(2), 42–47.
Gould J.; Smith F.S. Air-drag on synthetic-fiber textile monofilaments and yarns in axial flow at speeds of up to 100 meters per second. J. Text. Inst., 1980, l, 38.
Marla, V. T.; Shambaugh, R. L.; Papavassiliou, D. V. Use of an infrared camera for accurate determination of the temperature of polymer filaments. Ind. Eng. Chem. Res., 2007, 46(1), 336–344.
Bresee, R. R.; Ko, W. Fiber formation during melt blowing. Int. Nonwovens. J., 2003, 12(2), 21–28.
Kayser, J. C.; Shambaugh, R. L. The manufacture of continuous polymeric filaments by the melt-blowing process. Polym. Eng. Sci., 1990, 30(19), 1237–1251.
Wang, X.; Ke, Q. Experimental investigation of adhesive meltblown web production using accessory air. Polym. Eng. Sci., 2006, 46(1), 1–7.
Lee, Y. E.; Wadsworth, L. C. Fiber and web formation of melt-blown thermoplastic polyurethane polymers. J. Appl. Polym. Sci., 2007, 105(6), 3724–3727
Chen, Z.; Wang, R.; Zhang, X.; Yin, B. Study on measuring microfiber diameter in melt-blown web based on image analysis. Procedia Eng., 2011, 15, 3516–3520.
Duran, K.; Duran, D.; Oymak, G.; Kiliç, K.; Öncü, E.; Kara, M. Investigation of the physical properties of meltblown nonwovens for air filtration. Tekstil ve Konfeksiyon., 2013, 23(2), 136–142.
Chen, T.; Li, L.; Huang, X. Predicting the fibre diameter of melt blown nonwovens: comparison of physical, statistical and artificial neural network models. Model. Simul. Mater. Sci. Eng., 2005, 13(4), 575–584.
Wu, L.; Chen, T.; Yu, J. Study on the fiber diameter of polyactic melt blown nonwoven fabrics. Adv. Mater. Res., 2011, 175-176, 580-584.
Zhao, B. Production of polypropylene melt blown nonwoven fabrics: part II -effect of process parameters. Indian J. Fibre Text. Res., 2012, 37, 326–330.
Lee, Y; Wadsworth, L. Structure and filtration properties of melt blown polypropylene webs. Polym. Eng. Sci., 1990, 30(22), 1413–1419.
Ellison, C. J.; Phatak, A.; Giles, D. W.; Macosko, C. W.; Bates, F. S. Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer., 2007, 48(11), 3306–3316
Uppal, R.; Bhat, G.; Eash, C.; Akato, K. Meltblown nanofiber media for enhanced quality factor. Fibers Polym., 2013, 14(4), 660–668.
Hassan, M. A.; Yeom, B. Y.; Wilkie, A.; Pourdeyhimi, B.; Khan, S. A. Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci., 2013, 427, 336–344.
Xu, Q.; Wang, Y. The effects of processing parameter on melt-blown filtration materials. Adv. Mater. Res., 2013, 650, 78–84.
Zhang, X.; Wang, R.; Wu, H.; Xu, B. Automated measurements of fiber diameters in melt-blown nonwovens. J. Ind. Text., 2014, 43(4), 593–605.
Han, W.; Wang, X.; Bhat, G. S. Structure and air permeability of melt blown nanofiber webs. J. Nanomater. Mol. Nanotechnol., 2013, 2(3), 1000115.
Guo, M.; Liang, H.; Luo, Z.; Chen, Q.; Wei, W. Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption. Fibers. Polym., 2016, 17(2), 257–265.
Ruamsk, R.; Wataru T.; Takeshi, K. Melt-blowing conditions for preparing webs consisting of fine fibers. AIP Conf. Proc., 2016, 1779, 120002.
Yesil Y.; Bhat G. S. Structure and mechanical properties of polyethylene melt blown nonwovens. Int. J. Cloth. Sci. Tech., 2016, 28(6), 780–794.
Feng J. Preparation and properties of poly(lactic acid) fiber melt blown non-woven disordered mats. Mater. Lett., 2017, 189, 180–183.
Kucukali O. M.; Venkataraman M.; Mishra R. Influence of structural parameters on thermal performance of polypropylene nonwovens. Polym Adv. Technol., 2018, 29(12), 3027–3034.
Ishikawa, T.; Ishii, Y.; Ohkoshi, Y; Kim, K. H. Microstructural analysis of melt-blown nonwoven fabric by X-ray micro computed tomography. Text. Res. J., 2019, 89(9), 1734–1747.
Drabek, J.; Zatloukal, M. Effect of molecular weight and extensional rheology on melt blown process stability for linear isotactic polypropylenes. AIP Conf. Proc., 2019, 2107, 030006.
Drabek, J.; Zatloukal, M. Influence of long chain branching on fiber diameter distribution for polypropylene nonwovens produced by melt blown process. J. Rheol., 2019, 63(4), 519–532.
Hegde, R. R.; Bhat, G. S. Nanoparticle effects on structure and properties of polypropylene meltblown webs. J. Appl. Polym. Sci., 2010, 115(2), 1062–1072.
Xiao, H.; Gui, J.; Chen, G.; Xiao, C. Study on correlation of filtration performance and charge behavior and crystalline structure for melt-blown polypropylene electret fabrics. J. Appl. Polym. Sci., 2015, 132, 42807.
Bresee, R. R.; Daniluk, T. S. Characterizing nonwoven web structure using image analysis techniques. TAPPI J., 1997, 80(7), 133–138.
Arkady, C. Analysis and simulation of nonwoven irregularity and non-homogeneity. Text. Res. J., 1998; 68(4), 242–253.
Liu, J.; Zuo B.; Zeng X.; Vroman, P.; Rabenasolo, B. Nonwoven uniformity identification using wavelet texture analysis and LVQ neural network. Expert. Syst. Appl., 2010, 37(3), 2241–2246.
Liu, J.; Zuo B.; Vroman, P.; Rabenasolo, B.; Zeng X. Identification of nonwoven uniformity using generalized gaussian density and fuzzy neural network. J. Text. Inst., 2010, 101(12), 1080–1094.
Bresee, R. R.; Yan, Z. Shot development in meltblown webs. J. Text. Inst., 1998, 89(2), 304–319.
Huang. X. C.; Bresee. R. R. Characterizing nonwoven web structure using image analysis techniques. Part I: pore analysis in thin webs. INDA J. Nonwoven Res., 1993, 5(1), 13–21.
Huang. X. C.; Bresee. R. R. Characterizing nonwoven web structure using image analysis techniques. Part II: fiber orieniation analysis in thin webs. INDA J. Nonwoven Res., 1993, 5(2), 14–21.
Huang. X. C.; Bresee. R. R. Characterizing nonwoven web slructure using tmage analysis techniques. Pan III: web uniformity analysis. INDA J. Nonwoven Res., 1993, 5(3), 28–38.
Huang. X. C.; Bresee. R. R. Characterizing nonwoven web structure using image analysis techniques, Part IV: fiber diameter analysis for spunbonded webs. Int. Nonwovens. J., 1994, 6(4), 53–59.
Yan, Z.; Bresee, R. R. Characterizing nonwoven-web structure by using image-analysis techniques. Part V: analysis of shot in meltblown webs. J. Text. Inst., 1998, 89(2), 320–336.
Yan, Z.; Bresee, R. R. Flexible multifunction instrument for automated nonwoven web structure analysis. Text. Res. J., 1999, 69(11), 795–804.
Wang, R.; Xu, B.; Li, C. Accurate fiber orientation measurements in nonwovens using a multi-focus image fusion technique. Text. Res. J., 2014, 84, 115–124.
Yesil, Y.; Bhat, G. S. Porosity and barrier properties of polyethylene meltblown nonwovens. J. Text. Inst., 2016, 108(6), 1035–1040.
Tsai, P. P. Characterization of melt blown web properties using air flow technique. Int. Nowovens J., 1999, 8(2), 800216.
Tsai, P. P. Theoretical and experimental investigation on the relationship between the nonwoven structure and the web properties. Int. Nowovens J., 2002, 11(4), 33–36.
Bresee, R. R. Qureshi, U. A. Influence of processing conditions on melt blown web structure: part 1—DCD. Int. Nonwovens J., 2004, 13(1), 49–55.
Bresee, Randall R.; Qureshi, U. A.; Pelham, Matthew C. Influence of processing conditions on melt blown web structure: Part 2—primary airflow rate. J. Eng. Fibers Fabr., 2005, 14(2), 11–18.
Bresee, R. R.; Qureshi, U. A. Influence of processing conditions on melt blown web structure. Part III - water quench. J. Eng. Fibers. Fabr.,2005, 14(4), 27–25.
Bresee, R. R.; Qureshi, U. A. Influence of process conditions on melt blown web structure. Part IV-fiber diameter. J. Eng. Fibers. Fabr., 2006, 1(1), 32–46.
Kim, H. S.; Pourdeyhimi, B. A note on the effect of fiber diameter, fiber crimp and fiber orientation on pore size in thin webs. Int. Nonwovens J., 2000, 9(4), 15–19.
0
Views
89
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution