浏览全部资源
扫码关注微信
延边大学工学院,延吉 133002
Published:20 February 2024,
Received:24 May 2023,
Accepted:06 July 2023
扫 描 看 全 文
引用:刘志华, 林依洋, 陈爽, 韩顺玉, 姜男哲. 仿生天然高分子水凝胶在医用材料方面的应用. 高分子通报, 2024, 37(2), 162–173
Citation: Liu, Z. H.; Lin, Y. Y.; Chen, S.; Han, S. Y.; Jiang, N. Z. Biomimetic natural polymer hydrogels for medical material applications. Polym. Bull. (in Chinese), 2024, 37(2), 162–173
引用:刘志华, 林依洋, 陈爽, 韩顺玉, 姜男哲. 仿生天然高分子水凝胶在医用材料方面的应用. 高分子通报, 2024, 37(2), 162–173 DOI: 10.14028/j.cnki.1003-3726.2024.23.177.
Citation: Liu, Z. H.; Lin, Y. Y.; Chen, S.; Han, S. Y.; Jiang, N. Z. Biomimetic natural polymer hydrogels for medical material applications. Polym. Bull. (in Chinese), 2024, 37(2), 162–173 DOI: 10.14028/j.cnki.1003-3726.2024.23.177.
天然高分子水凝胶具有高度水合的三维网络结构,显示出独特的粘附性,能有效地控制出血,减少二次感染,且生物相容性和生物降解性好,是一种理想的医用粘合剂材料。近年来,鉴于目前医用粘合剂研发制备中对水下湿粘性以及生物降解性能等要求越来越严格,具有耐水粘附性、生物安全性和形状可控性的新型粘附材料成为研究的热点和难点。自然界生物对各种基质的粘附性主要取决于其组成或结构,利用天然高分子水凝胶材料进行仿生,可以使其兼具优异的组织粘附性、止血抑菌性和形状可控性等特性,是解决上述问题的有效策略。本文概述了两种类型的仿生天然高分子水凝胶材料粘附机制,针对性地讨论了贻贝、藤壶、牡蛎的组成特性和咸水鱼、细胞外基质(extracellular matrix)的结构特点以及粘附机理,并介绍了相应仿生天然高分子水凝胶材料在组织愈合、伤口止血及药物递送方面的研究进展。最后,对仿生天然高分子水凝胶在未来的发展方向进行展望并为其提供相应的建议。
Natural polymer hydrogels with a highly hydrated three-dimensional polymer network structure show unique adhesion properties that are highly efficient in controlling bleeding and reducing secondary infections. Moreover
they are biocompatible and biodegradable
making them an ideal material for medical adhesives. In recent years
in view of the increasingly stringent requirements for underwater wet viscosity and biodegradability in the research and development of medical adhesives
new adhesion materials with water resistance
biological safety and shape controllability have become a hot spot and difficult point in research. The adhesion of natural organisms to various substrates is mainly dependent on their composition or structure
and biomimetic use of natural polymeric hydrogel materials
which can combine excellent tissue adhesion
haemostasis and bacteriostatic properties and shape controllability
is an effective strategy to address these issues. This paper outlines the adhesion mechanisms of two types of bionic natural polymeric hydrogel materials
discusses the compositional properties of mussel
barnacle and oyster and the structural characteristics of saltwater fish and extracellular matrix as well as the adhesion mechanism in a targeted manner
and introduces the research progress of the corresponding bionic natural polymeric hydrogel materials in tissue healing
wound hemostasis and drug delivery. Finally
the future directions of bionic natural polymer hydrogels are presented and the suggestions are provided.
医用粘合剂仿生设计水凝胶天然聚合物
Medical adhesiveBionic designHydrogelNatural polymer
Faris, A.; Khalid, L.; Hashim, M.; Yaghi, S.; Magde, T.; Bouresly, W.; Hamdoon, Z.; Uthman, A. T.; Marei, H.; Al-Rawi, N. Characteristics of suture materials used in oral surgery: systematic review. Int. Dent. J., 2022, 72(3), 278–287.
Javed, F.; Al-Askar, M.; Almas, K.; Romanos, G. E.; Al-Hezaimi, K. Tissue reactions to various suture materials used in oral surgical interventions. ISRN Dent., 2012, 2012, 762095.
Ma, P. S.; Ye, J. Y.; Tian, K.; Chen, X. H.; Zhang, L. W. Fracture phase field modeling of 3D stitched composite with optimized suture design. Comput. Methods Appl. Mech. Eng., 2022, 392, 114650.
夏毅然, 徐永祥, 刘文冰, 赵成如. 医用粘合剂的研究及应用进展. 化工新型材料, 2003, 31(4), 9–12.
Wang, Y.; Wu, Y.; Long, L. Y.; Yang, L.; Fu, D. H.; Hu, C.; Kong, Q. Q.; Wang, Y. B. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment. ACS Appl. Mater. Interfaces, 2021, 13(28), 33584–33599.
Sheng, Y. M.; Wang, M. H.; Zhang, K. P.; Wu, Z. Y.; Chen, Y. X.; Lu, X. An “inner soft external hard”, scratch-resistant, self-healing waterborne poly(urethane-urea) coating based on gradient metal coordination structure. Chem. Eng. J., 2021, 426, 131883.
李婷, 向双飞, 东为富, 马丕明, 施冬健, 陈明清. 纳米钠基蒙脱土复合超强机械性能双网络抗菌水凝胶. 物理化学学报, 2016, 32(11), 2761–2768.
Ajdary, R.; Tardy, B. L.; Mattos, B. D.; Bai, L.; Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater., 2021, 33(28), 2001085.
El-Sherbiny, I. M.; Yacoub, M. H. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316–342.
Cheng, Y. X.; Nada, A. A.; Valmikinathan, C. M.; Lee, P.; Liang, D. N.; Yu, X. J.; Kumbar, S. G. In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering. J. Appl. Polym. Sci., 2014, 131(4), 39934.
蒋志飞. 活性自由基聚合法制备聚丙烯酰胺及其水凝胶的研究. 重庆: 重庆大学. 2007.
黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展. 材料导报, 2022, 36(8), 193–199.
李瑞. 多功能双层仿生水凝胶贴剂在抗癌药物递送系统中的研究. 南京: 南京理工大学. 2020.
曾志文. 贻贝粘结蛋白仿生医用粘合剂的制备及其性能研究. 上海: 东华大学. 2018.
Fan, H. L.; Gong, J. P. Bioinspired underwater adhesives. Adv. Mater., 2021, 33(44), 2102983.
Park, K. H.; Seong, K. Y.; Yang, S. Y.; Seo, S. Advances in medical adhesives inspired by aquatic organisms’ adhesion. Biomater. Res., 2017, 21(1), 1–9.
王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂. 化学进展, 2021, 33(12), 2378–2391.
Cai, C.; Chen, Z.; Chen, Y. J.; Li, H.; Yang, Z.; Liu, H. Z. Mechanisms and applications of bioinspired underwater/wet adhesives. J. Polym. Sci., 2021, 59(23), 2911–2945.
Golser, A. V.; Scheibel, T. Biotechnological production of the mussel byssus derived collagen preColD. RSC Adv., 2017, 7(61), 38273–38278.
Li, Y. R.; Cao, Y. The molecular mechanisms underlying mussel adhesion. Nanoscale Adv., 2019, 1(11),4246-4257.
Park, S.; Kim, S.; Jho, Y.; Hwang, D. S. Cation–π interactions and their contribution to mussel underwater adhesion studied using a surface forces apparatus: a mini-review. Langmuir, 2019, 35(48), 16002–16012.
Bhargava, S.; Chen Lee, S. S.; Min Ying, L. S.; Neo, M. L.; Lay-Ming Teo, S.; Valiyaveettil, S. Fate of nanoplastics in marine larvae: a case study using barnacles, Amphibalanus amphitrite. ACS Sustain. Chem. Eng., 2018, 6(5), 6932–6940.
Zhang, B.; Jia, L. H.; Jiang, J. R.; Wu, S. S.; Xiang, T.; Zhou, S. B. Biomimetic microstructured hydrogels with thermal-triggered switchable underwater adhesion and stable antiswelling property. ACS Appl. Mater. Interfaces, 2021, 13(30), 36574–36586.
Gan, K. S.; Liang, C.; Bi, X. Y.; Wu, J. Z.; Ye, Z. H.; Wu, W. J.; Hu, B. R. Adhesive materials inspired by barnacle underwater adhesion: biological principles and biomimetic designs. Front. Bioeng. Biotechnol., 2022, 10, 870445.
Mesaglio, T.; Dowse, M.; McMartin, G. First record of the barnacle Conchoderma virgatum on an ephippid fish. J. Mar. Biol. Ass., 2022, 102(3-4), 174–177.
Berglin, M.; Gatenholm, P. The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties. Colloids Surf. B, 2003, 28(2-3), 107–117.
So, C. R.; Fears, K. P.; Leary, D. H.; Scancella, J. M.; Wang, Z.; Liu, J. L.; Orihuela, B.; Rittschof, D.;Spillmann, C. M.; Wahl, K. J. Sequence basis of barnaclecement nanostructure is defined by proteins with silk homology. Sci. Rep., 2016, 6, 36219.
Burkett, J. R.; Hight, L. M.; Kenny, P.; Wilker, J. J. Oysters produce an organic-inorganic adhesive for intertidal reef construction. J. Am. Chem. Soc., 2010, 132(36), 12531–12533.
Yang, W.; Kang, X. Y.; Gao, X.; Zhuang, Y.; Fan, C.; Shen, H.; Chen, Y. Y.; Dai, J. W. Biomimetic natural biopolymer-based wet-tissue adhesive for tough adhesion,seamless sealed, emergency/nonpressing hemostasis, andpromoted wound healing. Adv. Funct. Mater., 2023, 33(6), 2211340.
Harper, E. M. Attachment of mature oysters (Saccostrea cucullata ) to natural substrata. Mar. Biol., 1997, 127(3), 449–453.
Yamaguchi, K. Shell structure and behaviour related to cementation in oysters. Mar. Biol., 1994, 118(1), 89–100.
Deng, Z. X.; Yu, R.; Guo, B. L. Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front., 2021, 5(5), 2092–2123.
寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展. 中华损伤与修复杂志(电子版), 2021, 16(5), 449–452.
Du, H. C.; Jiang, L.; Geng, W. X.; Li, J.; Zhang, R.; Dang, J. G.; Shu, M. G.; Li, L. W. Growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet with improved in vivo wound repair activity. BioMed Res. Int., 2017, 2017, 1–11.
Theocharis, A. D.; Skandalis, S. S.; Tzanakakis, G. N.; Karamanos, N. K. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J., 2010, 277(19), 3904–3923.
Spang, M. T.; Christman, K. L. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater., 2018, 68, 1–14.
Saldin, L. T.; Cramer, M. C.; Velankar, S. S.; White, L. J.; Badylak, S. F. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater., 2017, 49, 1–15.
Li, L. Q.; Wu, P. W.; Yu, F.; Ma, J. Double network hydrogels for energy/environmental applications: challenges and opportunities. J. Mater. Chem. A, 2022, 10(17), 9215–9247.
Blesic, M.; Gilmore, B. F.; Holbrey, J. D.; Jacquemin, J.; Level, G.; Nockemann, P.; Stella, L. An introduction tozwitterionic salts. Green Chem., 2017, 19(17), 4007–4011.
Li, B. W.; Jain, P.; Ma, J. R.; Smith, J. K.; Yuan, Z. F.; Hung, H. C.; He, Y. W.; Lin, X. J.; Wu, K.; Pfaendtner, J.; Jiang, S. Y. Trimethylamine N-oxide-derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci. Adv., 2019, 5(6), eaaw9562.
Alizzi, A. M.; Summers, P.; Boon, V. H.; Tantiongco, J. P.; Thompson, T.; Leslie, B. J.; Williams, D.; Steele, M.; Bidstrup, B. P.; Diqer, A. M. A. Reduction of post-surgical pericardial adhesions using a pig model. Heart Lung Circ., 2012, 21(1), 22–29.
Fujita, M.; Policastro, G. M.; Burdick, A.; Lam, H. T.; Ungerleider, J. L.; Braden, R. L.; Huang, D. E.; Osborn, K. G.; Omens, J. H.; Madani, M. M.; Christman, K. L. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat. Commun., 2021, 12, 3764.
Lee, B. P.; Huang, K.; Nunalee, F. N.; Shull, K. R.; Messersmith, P. B. Synthesis of 3,4-dihydroxypheny-lalanine (DOPA) containing monomers and their co-poly-merization with PEG-diacrylate to form hydrogels. J. Biomater. Sci. Polym. Ed., 2004, 15(4), 449–464.
Cui, C. Y.; Wu, T. L.; Chen, X. Y.; Liu, Y.; Li, Y.; Xu, Z. Y.; Fan, C. C.; Liu, W. G. A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion. Adv. Funct. Mater., 2020, 30(49), 2005689.
Shin, J.; Choi, S.; Kim, J. H.; Cho, J. H.; Jin, Y.; Kim, S.; Min, S.; Kim, S. K.; Choi, D.; Cho, S. W. Tissue tapes—phenolic hyaluronic acid hydrogel patches for off-the-shelf therapy. Adv. Funct. Mater., 2019, 29(49), 1903863.
Cui, C. Y.; Wu, T. L.; Gao, F.; Fan, C. C.; Xu, Z. Y.; Wang, H. B.; Liu, B.; Liu, W. G. An autolytic high strength instant adhesive hydrogel for emergency self-rescue. Adv. Funct. Mater., 2018, 28(42), 1804925.
Teng, L.; Shao, Z. W.; Bai, Q.; Zhang, X. L.; He, Y. S.; Lu, J. Y.; Zou, D. R.; Feng, C. L.; Dong, C. M. Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater., 2021, 31(43), 2105628.
Song, F. Y.; Kong, Y.; Shao, C. Y.; Cheng, Y.; Lu, J.; Tao, Y. H.; Du, J.; Wang, H. S. Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater., 2021, 136, 170–183.
Wu, J.; Pan, Z.; Zhao, Z. Y.; Wang, M. H.; Dong, L.; Gao, H. L.; Liu, C. Y.; Zhou, P.; Chen, L.; Shi, C. J.; Zhang, Z. Y.; Yang, C.; Yu, S. H.; Zou, D. H. Anti-swelling, robust, and adhesive extracellular matrix-mimicking hydrogel used as intraoral dressing. Adv. Mater., 2022, 34(20), 2200115.
Lang, N.; Pereira, M. J.; Lee, Y. H.; Friehs, I.; Vasilyev, N. V.; Feins, E. N.; Ablasser, K.; O'Cearbhaill, E. D.; Xu, C. J.; Fabozzo, A.; Padera, R.; Wasserman, S.; Freudenthal, F.; Ferreira, L. S.; Langer, R.; Karp, J. M.; del Nido, P. J. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med., 2014, 6(218), 218ra6.
Hong, Y.; Zhou, F. F.; Hua, Y. J.; Zhang, X. Z.; Ni, C. Y.; Pan, D. H.; Zhang, Y. Q.; Jiang, D. M.; Yang, L.; Lin, Q. N.; Zou, Y. W.; Yu, D. S.; Arnot, D. E.; Zou, X. H.; Zhu, L. Y.; Zhang, S. F.; Ouyang, H. W. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun., 2019, 10(1), 2060.
Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.; Mooney, D. J. Tough adhesives for diverse wet surfaces. Science, 2017, 357(6349), 378–381.
Yuk, H.; Wu, J. J.; Sarrafian, T. L.; Mao, X. Y.; Varela, C. E.; Roche, E. T.; Griffiths, L. G.; Nabzdyk, C. S.; Zhao, X. H. Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. Nat. Biomed. Eng., 2021, 5(10), 1131–1142.
Zhang, D. Y.; Hu, Z.; Zhang, L. Y.; Lu, S. T.; Liang, F. Y.; Li, S. D. Chitosan-based thermo-sensitive hydrogel loading oyster peptides for hemostasis application. Materials, 2020, 13(21), 5038.
Wang, Q. K.; Li, W.; He, Y. H.; Ren, D. D.; Kow, F.; Song, L. L.; Yu, X. J. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem., 2014, 145, 991–996.
Zhang, Z. R.; Zhou, F. B.; Liu, X. L.; Zhao, M. M. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem., 2018, 258, 269–277.
许丹, 林峰, 朱小语. 牡蛎肽对免疫抑制小鼠免疫功能的影响. 北京大学学报:医学版, 2016, 48, 392–397.
Asha, K. K.; Remya Kumari, K. R.; Ashok Kumar, K.; Chatterjee, N. S.; Anandan, R.; Mathew, S. Sequence determination of an antioxidant peptide obtained by enzymatic hydrolysis of oyster Crassostrea madrasensis (preston). Int. J. Pept. Res. Ther., 2016, 22(3), 421–433.
范治平, 程萍, 丁壮, 赵燕娜, 李军, 刘敏, Sangeeta Prakash, 张德蒙, 王文丽, 王正平, 韩军. pH敏感型聚谷氨酸/透明质酸基互穿网络医用水凝胶的制备及表征. 高分子通报, 2020, (2), 23–37.
Chen, W.; Kouwer, P. H. J. Combining mechanical tuneability with function: biomimetic fibrous hydrogels with nanoparticle crosslinkers. Adv. Funct. Mater., 2021, 31(47), 2105713.
Li, X. H.; Tang, C. J.; Liu, D.; Yuan, Z. F.; Hung, H. C.; Luozhong, S.; Gu, W. C.; Wu, K.; Jiang, S. Y. High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments. Adv. Mater., 2021, 33(39), 2102479.
李学锋, 王慧, 龙世军, 黄以万, 李海燕. 离子双交联海藻酸钠/聚(丙烯酰胺-co-丙烯酸)高强度水凝胶的研究. 材料导报, 2020, 34(16), 16149–16154.
0
Views
100
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution