浏览全部资源
扫码关注微信
1..西南石油大学化学化工学院 四川省油气田应用化学重点实验室,成都 610500
2..中海油能源发展股份有限公司工程技术分公司,天津 300452
3..中国石油西南油气田分公司天然气研究院,成都 610213
4..中国石油川庆钻探工程有限公司地质勘探开发研究院,成都 610051
Published:20 February 2024,
Received:30 May 2023,
Accepted:20 July 2023
扫 描 看 全 文
引用:贺杰, 叶子, 王宏申, 陈庆梅, 赵伟, 刘航瑞. α-环糊精主客体识别超分子水凝胶的制备及其宏观流变性能构建过程研究. 高分子通报, 2024, 37(2), 229–237
Citation: He, J.; Ye, Z.; Wang, H. S.; Chen, Q. M.; Zhao. W.; Liu, H. R. Fabrication of α-CD host-guest recognition supramolecular hydrogel and investigation on its macro-rheological performance establishment process. Polym. Bull. (in Chinese), 2024, 37(2), 229–237
引用:贺杰, 叶子, 王宏申, 陈庆梅, 赵伟, 刘航瑞. α-环糊精主客体识别超分子水凝胶的制备及其宏观流变性能构建过程研究. 高分子通报, 2024, 37(2), 229–237 DOI: 10.14028/j.cnki.1003-3726.2024.23.185.
Citation: He, J.; Ye, Z.; Wang, H. S.; Chen, Q. M.; Zhao. W.; Liu, H. R. Fabrication of α-CD host-guest recognition supramolecular hydrogel and investigation on its macro-rheological performance establishment process. Polym. Bull. (in Chinese), 2024, 37(2), 229–237 DOI: 10.14028/j.cnki.1003-3726.2024.23.185.
采用7 wt%的
α
-环糊精(
α
-CD)溶液和5 wt%的甲氧基聚乙二醇甲基丙烯酸酯均聚物(PMPEGA-2000)溶液制备了
α
-CD/PMPEGA-2000超分子水凝胶,并对其形貌、结构、形成条件和宏观流变学性能构建过程进行了表征和研究。结果表明,体积比不低于1.5:1是两种溶液混合后形成凝胶的必要条件;当体积比为2:1时,形成的凝胶黏度最大。热重分析、X射线粉末衍射分析和扫描电镜结果表明,该凝胶是基于
α
-CD与PMPEGA-2000之间的主客体识别所形成,具有三维网络结构。光学微流变分析结果显示,该凝胶宏观流变性能的构建过程实则是凝胶内部主客体识别交联点不断增多,网络结构强度不断增强的过程。该过程始于
α
-CD溶液与PMPEGA-2000溶液混合后的8′36″,在64′00″后基本完成,耗时约55′24″。
α
-CD/PMPEGA-2000 supramolecular hydrogel was fabricated by mixing 7 wt%
α
-cyclodextrin (
α
-CD) aqueous solution with 5 wt% methoxy polyethylene glycol (2000) methacrylate homopolymer (PMPEGA-2000) aqueous solution. The necessary condition for the formation of the hydrogel was that the volume ratio of the two aqueous solution should not be less than 1.5:1. When the volume ratio was 2:1
a hydrogel with the highest viscosity can be obtained. The scanning electron microscopy results confirmed that there exist three-dimensional network structures in the hydrogel. The results of thermogravimetric analysis and X-ray powder diffraction analysis indicated that the formation of the hydroygel was based on the host-guest recognition between
α
-CD and PMPEGA-2000. The results of optical microrheological analysis showed that the macroscopic rheological performance establishment process of the hydrogel was actually a process of an increasing in the number of host-guest recognition crosslinking points
thereby constantly enhancing the strength of the network structure. The process started at 8′36″ after the mixing of
α
-CD aqueous solution and PMPEGA-2000 aqueous solution
and was basically completed at 64′00″. The entire process took about 55′24″.
超分子水凝胶三维网络结构主客体识别微流变宏观流变性能
Supramolecular hydrogelThree-dimensional network structureHost-guest recognitionMicro-rheologyMacro-rheological performance
Lehn, J. M. Towards complex matter: supramolecular chemistry and self-organization. Eur. Rev., 2009, 17(2), 263–280.
Knani, D.; Alperstein, D. Simulation of DBS, DBS-COOH, and DBS-CONHNH2 as hydrogelators. J. Phys. Chem. A, 2017, 121(5), 1113–1120.
Zou, L.; Braegelman, A. S.; Webber, M. J. Dynamic supramolecular hydrogels spanning an unprecedented range of host-guest affinity. ACS Appl. Mater. Interfaces, 2019, 11(6), 5695–5700.
Yang, L. L.; Tan, X. X.; Wang, Z. Q.; Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev., 2015, 115(15), 7196–7239.
Cheng, W. N.; Zhao, D. X.; Qiu, Y.; Hu, H. S.; Wang, H.; Wang, Q.; Liao, Y. G.; Peng, H. Y.; Xie, X. L. Robust multi-responsive supramolecular hydrogel based on a mono-component host-guest gelator. Soft Matter, 2018, 14(25), 5213–5221.
Lu, J. R.; Hu, J. S.; Liang, Y. H.; Cui, W. Q. The supramolecular organogel formed by self-assembly of ursolic acid appended with aromatic rings. Materials, 2019, 12(4), 614.
Zhang, J.; Zhang, W.; Guo, J. N.; Yuan, C.; Yan, F. Ultrahigh ionic liquid content supramolecular ionogels for quasi-solid-state dye sensitized solar cells. Electrochim. Acta, 2015, 165, 98–104.
Peng, D.; Gao, H. J.; Huang, P. S.; Shi, X. G.; Zhou, J. H.; Zhang, J. H.; Dong, A. J.; Tang, H.; Wang, W. W.; Deng, L. D. Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. J. Biomater. Sci. Polym. Ed., 2019, 30(10), 877–893.
Lee, H. J.; Le, P. T.; Kwon, H. J.; Park, K. D. Supramolecular assembly of tetronic-adamantane andpoly(β-cyclodextrin) as injectable shear-thinning hydrogels. J. Mater. Chem. B, 2019, 7(21), 3374–3382.
Hadizadeh, F.; Khodaverdi, E.; Gharechahi, M.; Alibolandi, M.; Tekie, F. M.; Khashyarmanesh, B. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone. Int. J. Pharm. Investig., 2016, 6(2), 78.
Shu, C.; Li, T. F.; Li, D.; Zhu, Y. T.; Tang, Y. F.; Kong, Y. F.; Yang, Z. X.; Gu, M. Y.; Ding, L. Anticancer activity and pharmacokinetics of TanshinoneⅡA derivative supramolecular hydrogels. J. Drug Deliv. Sci. Technol., 2018, 48, 509–515.
Yao, H.; Wang, J.; Fan, Y. Q.; Zhou, Q.; Guan, X. W.; Kan, X. T.; Zhang, Y. M.; Lin, Q.; Wei, T. B. Supramolecular hydrogel-based AIEgen: construction and dual-channel recognition of negative charged dyes. Dyes Pigments, 2019, 167, 16–21.
Zhang, Q. W.; Qu, D. H.; Ma, X.; Tian, H. Sol-gel conversion based on photoswitching between noncovalently and covalently linked netlike supra-molecular polymers. Chem. Commun., 2013, 49(84), 9800–9802.
Yu, F.; Cao, X. D.; Du, J. E.; Wang, G.; Chen, X. F. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl. Mater. Interfaces, 2015, 7(43), 24023–24031.
Seo, B. B.; Park, M. R.; Song, S. C. Sustained release of exendin 4 using injectable and ionic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus. ACS Appl. Mater. Interfaces, 2019, 11(17), 15201–15211.
Cui, H. T.; Cui, L. G.; Zhang, P. B.; Huang, Y. B.; Wei, Y.; Chen, X. S. In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair. Macromol. Biosci., 2014, 14(3), 440–450.
Léger, B.; Menuel, S.; Ponchel, A.; Hapiot, F.; Monflier, E. Nanoparticle-based catalysis using supramolecular hydrogels. Adv. Synth. Catal., 2012, 354(7), 1269–1272.
Zhang, W. J.; Dynes, J. J.; Hu, Y. F.; Jiang, P. P.; Ma, S. Q. Porous metal-metalloporphyrin gel as catalytic binding pocket for highly efficient synergistic catalysis. Nat. Commun., 2019, 10, 1913.
Yamaoka, T.; Tabata, Y.; Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci., 1994, 83(4), 601–606.
Whitesides, G. M.Poly(ethylene glycol) chemistry biotechnical and biomedical applications. Milton Harris, J. Ed. Appl. Biochem. Biotechnol., 1993, 41(3), 233–234.
Li, J.; Harada, A.; Kamachi, M. Sol-gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly(ethylene glycol)s in aqueous solution. Polym. J., 1994, 26(9), 1019–1026.
He, F. A.; Liu, L. Z.; Huang, H. K.; Lv, Q. C.; Wu, H. J. Preparation of PEO-b-PPO-b-PEO/α-cyclodextrin supra-molecular hydrogels hybridized with exfoliated graphite nanoplates. J. Macromol. Sci. A, 2018, 55(9), 642–648.
Poudel, A. J.; He, F.; Huang, L. X.; Xiao, L.; Yang, G. Supramolecular hydrogels based on poly(ethylene glycol)-poly(lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydr. Polym., 2018, 194, 69–79.
Tonegawa, A.; Tamura, A.; Yui, N. Emerging nanoassembly of polyrotaxanes comprising acetylated α-cyclodextrins and high-molecular-weight axle polymer. ACS Macro Lett., 2019, 8(7), 826–834.
孙立泷, 许韵华, 朱雯, 彭勃, 陈永明, 白茹. 超分子水凝胶作为胰岛素缓释体系的研究. 高分子学报, 2015, (6), 673–678.
赵三平, 徐卫林. 环糊精超分子水凝胶. 化学进展, 2010, 22(5), 916–926.
Wenz, G. Recognition of monomers and polymers by cyclodextrins. Adv. Polym. Technol.,2009, 222, 1–54.
庄绪杰, 李妍静, 于东杰, 陈大俊. β-环糊精/聚乙二醇复合物的制备及表征. 化学世界, 2014, 55(9), 537–540.
Huang, F. H.; Gibson, H. W. Polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci., 2005, 30(10), 982–1018.
余春柳. 聚乙二醇/环糊精自组装水凝胶载体构建及用于酶的负载. 泉州: 华侨大学, 2020.
Chen, Y. Q.; Chou, P. L.; Cheng, C. Y.; Chiang, C. C.; Wei, M. T.; Chuang, C. T.; Chen, Y. L S.; Chiou, A. Microrheology of human synovial fluid of arthritis patients studied by diffusing wave spectroscopy. J. Biophoton., 2012, 5(10), 777–784.
Abdala, A. A.; Amin, S.; van Zanten, J. H.; Khan, S. A. Tracer microrheology study of a hydrophobically modified comblike associative polymer. Langmuir, 2015, 31(13), 3944–3951.
Larsen, T. H.; Furst, E. M. Microrheology of the liquid-solid transition during gelation. Phys. Rev. Lett., 2008, 100(14), 146001.
Fu, W. T.; Chen, E. M.; McClements, D. J.; Cao, Y. P.; Liu, S. L.; Li, B.; Li, Y. Controllable viscoelastic properties of whey protein-based emulsion gels by combined cross-linking with calcium ions and cinnamaldehyde. ACS Appl. Bio Mater., 2019, 2(1), 311–320.
Ozaki, H.; Indei, T.; Koga, T.; Narita, T. Physical gelation of supramolecular hydrogels cross-linked by metal-ligand interactions: dynamic light scattering and microrheological studies. Polymer, 2017, 128, 363–372.
Kang, W.; Yu, Y.; Yang, H.; Li, Z.; Lu, Y.; He, Y. Determination of dynamic gelling process of chromium gel system based on micro rheological method. Polym. Eng. Sci.,2017, 33(4), 100–106, 113.
Zhang, Y. R.; Kong, X. M.; Gao, L.; Lu, Z. C.; Zhou, S. M.; Dong, B. Q.; Xing, F. In-situ measurement of viscoelastic properties of fresh cement paste by a microrheology analyzer. Cem. Concr. Res., 2016, 79, 291–300.
田缘, 李双红, 周韵, 叶发银, 赵国华. 淀粉糊老化行为的粒子示踪微流变表征方法初探. 食品与发酵工业, 2019, 45(17), 79–84.
0
Views
50
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution