浏览全部资源
扫码关注微信
安徽工程大学纺织服装学院,芜湖 241000
Published:20 February 2024,
Received:29 June 2023,
Accepted:09 August 2023
扫 描 看 全 文
引用:左红梅, 闻立冬, 郭锦涛, 董功明, 郑皓月, 王洪杰, 王赫, 阮芳涛, 邹梨花, 徐珍珍. 芳纶增强MXene-聚丙烯酸-无定型碳酸钙复合水凝胶的制备及性能. 高分子通报, 2024, 37(2), 257–262
Citation: Zuo, H. M.; Wen, L. D.; Guo, J. T.; Dong, G. M.; Zheng, H. Y.; Wang, H. J.; Wang, H.; Ruan, F. T.; Zou, L. H.; Xu, Z. Z. Preparation and properties of Mxene-poly(acrylic acid)-amorphous calcium carbonate composite hydrogel reinforced by aramid. Polym. Bull. (in Chinese), 2024, 37(2), 257–262
引用:左红梅, 闻立冬, 郭锦涛, 董功明, 郑皓月, 王洪杰, 王赫, 阮芳涛, 邹梨花, 徐珍珍. 芳纶增强MXene-聚丙烯酸-无定型碳酸钙复合水凝胶的制备及性能. 高分子通报, 2024, 37(2), 257–262 DOI: 10.14028/j.cnki.1003-3726.2024.23.221.
Citation: Zuo, H. M.; Wen, L. D.; Guo, J. T.; Dong, G. M.; Zheng, H. Y.; Wang, H. J.; Wang, H.; Ruan, F. T.; Zou, L. H.; Xu, Z. Z. Preparation and properties of Mxene-poly(acrylic acid)-amorphous calcium carbonate composite hydrogel reinforced by aramid. Polym. Bull. (in Chinese), 2024, 37(2), 257–262 DOI: 10.14028/j.cnki.1003-3726.2024.23.221.
传统水凝胶存在机械性能和可加工性差的缺点,本研究制备了芳纶增强MXene-聚丙烯酸-无定型碳酸钙(ANF/MXene-PAA-ACC)复合水凝胶,并研究了其相关力学与物理性能。首先,通过氟化锂和盐酸刻蚀法,结合超声剥离工艺制备了二维MXene单层纳米片,将其应用到PAA-ACC复合水凝胶中。为了提高MXene-PAA-ACC的力学性能,进一步通过加入芳纶,制备了ANF/MXene-PAA-ACC复合水凝胶。采用扫描电镜和万能力学试验机对复合水凝胶的表观形貌、力学性能、自修复和粘附性等物理性能进行了表征和测试。结果表明:与PAA-ACC水凝胶相比,ANF/MXene-PAA-ACC水凝胶的可加工性、力学性能、粘附性、自修复性都得到了提高。
Traditional hydrogels have the disadvantages of poor mechanical properties and machinability. In this study
aryl-reinforced MXene-poly(acrylic acid)-amorphous calcium carbonate (ANF/MXene-PAA-ACC) composite hydrogels were prepared
and the related mechanical and physical properties were studied. Firstly
two-dimensional MXene monolayer nanosheets were prepared by the method of lithium fluoride and hydrochloric acid etching combing with ultrasonic stripping process. Then
it was added into PAA-ACC composite hydrogel. In order to improve the mechanical properties of MXene-PAA-ACC hydrogel
ANF/MXene-PAA-ACC composite hydrogel was prepared by adding aryl fiber. The appearance
mechanical properties
self-healing and adhesion properties of the ANF/MXene-PAA-ACC composite hydrogels were characterized and tested by scanning electron microscopy and universal mechanical testing machine. The results showed that compared with PAA-ACC hydrogels
the machinability
mechanical properties
adhesion and self-repair performance of ANF/MXene-PAA-ACC hydrogels were all improved.
MXene聚丙烯酸-无定型碳酸钙水凝胶芳纶
MXenePoly(acrylic acid)-amorphous calcium carbonate hydrogelAramid fiber
Zhu, M. J.; Inomata, N.; Adachi, N.; Sakurai, A.; Nomura, M.; Ono, T. High-gauge factor strain sensor based on piezoelectric aluminum nitride coupled to MOSFET. IEEE Sens. J., 2019, 19(10), 3626–3632.
Zhu, P.; Zhao, Z. M.; Nie, J. H.; Hu, G. W.; Li, L. J.; Zhang, Y. Ultra-high sensitivity strain sensor based on piezotronic bipolar transistor. Nano Energy, 2018, 50, 744–749.
Ying, Y.; Mu, C. A.; Mahmoud, K. A.; Bo, W. An MXene-doped PVA/PVP hydrogel-based strain sensor applicable in liquid environment. Smart Mater. Struct., 2023, 32(2), 025010.
Liang, J. H.; He, J.; Xin, Y.; Gao, W. S.; Zeng, G.; He, X. MXene reinforced PAA/PEDOT:PSS/MXene conductive hydrogel for highly sensitive strain sensors. Macromol. Mater. Eng., 2023, 308(3), 2200519.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37), 4248–4253.
Wu, Z. T.; Deng, Y. Q.; Yu, J. Y.; Han, J. W.; Shang, T. X.; Chen, D. R.; Wang, N.; Gu, S. C.; Lv, W.; Kang, F. Y.; Tao, Y.; Yang, Q. H. Hydroiodic-acid-initiated dense yet porous Ti3C2Tx MXene monoliths toward superhigh areal energy storage. Adv. Mater., 2023, 35(29), 2300580.
Mashtalir, O.; Lukatskaya, M. R.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater., 2015, 27(23), 3501–3506.
Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev., 2019, 48(1), 72–133.
Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M. C.; Aslan, M.; Suss, M. E.; Presser, V. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitivedeionization. J. Mater. Chem. A, 2016, 4(47), 18265–18271.
Su, T. M.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem, 2018, 11(4), 688–699.
Yu, K. F.; Tang, L.; Cao, X.; Guo, Z. H.; Zhang, Y.; Li, N.; Dong, C. X.; Gong, X.; Chen, T.; He, R.; Zhu, W. K. Semiconducting metal-organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(VI) photoreduction. Adv. Funct. Mater., 2022, 32(20), 2200315.
Cheng, L.; Li, X.; Zhang, H. W.; Xiang, Q. J. Two-dimensional transition metal MXene-based photocatalysts for solar fuel generation. J. Phys. Chem. Lett., 2019, 10(12), 3488–3494.
Aakyiir, M.; Kingu, M. A S.; Araby, S.; Meng, Q. S.; Shao, J. Y.; Amer, Y.; Ma, J. Stretchable, mechanically resilient, and high electromagnetic shielding polymer/MXene nanocomposites. J. Appl. Polym. Sci., 2021, 138(22), 50509.
Han, M. K.; Yin, X. W.; Hantanasirisakul, K.; Li, X. L.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y.; Zhang, L. T.; Cheng, L. F.; Gogotsi, Y. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater., 2019, 7(10), 1900267.
Bai, Y.; Bi, S. H.; Wang, W. K.; Ding, N.; Lu, Y. Y.; Jiang, M. Y.; Ding, C. B.; Zhao, W. W.; Liu, N.; Bian, J.; Liu, S. J.; Zhao, Q. A. Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater., 2022, 20(4), 444–454.
Li, H.; Du, Z. Q. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications. ACS Appl. Mater. Interfaces, 2019, 11(49), 45930–45938.
Li, L. M.; Ji, X. F.; Chen, K. Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors. J. Biomater. Appl., 2023, 37(7), 1169–1181.
Bi, L. L.; Yang, Z. L.; Chen, L. J.; Wu, Z.; Ye, C. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A, 2020, 8(38), 20030–20036.
Lyu, J. Y.; Zhou, Q. Y.; Wang, H. F.; Xiao, Q.; Qiang, Z.; Li, X. P.; Wen, J.; Ye, C. H.; Zhu, M. F. Mechanically strong, freeze-resistant, and ionically conductive organohydrogels for flexible strain sensors and batteries. Adv. Sci., 2023, 10(9), 2206591.
Sun, M. Z.; Li, H. G.; Hou, Y.; Huang, N.; Xia, X. Y.; Zhu, H. J.; Xu, Q.; Lin, Y.; Xu, L. Z. Multifunctional tendon-mimetic hydrogels. Sci. Adv., 2023, 9(7), eade6973.
Zhou, Y.; Wang, S. J.; Li, D. S.; Jiang, L. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. B, 2021, 213, 108701.
Zhu, Y. Y.; Liu, J.; Guo, T.; Wang, J. J.; Tang, X. Z.; Nicolosi, V. Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano, 2021, 15(1), 1465–1474.
0
Views
72
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution