Huang, M. R.; Li, L.; Sun, C. Y.; Zhang, H.; Li, S. P.; Ji, J. Y. Electrochemical and microwave absorbing properties of polypyrrole coated silicon carbide aerogel composites. Polym. Bull. (in Chinese), 2024, 37(4), 513–522
Huang, M. R.; Li, L.; Sun, C. Y.; Zhang, H.; Li, S. P.; Ji, J. Y. Electrochemical and microwave absorbing properties of polypyrrole coated silicon carbide aerogel composites. Polym. Bull. (in Chinese), 2024, 37(4), 513–522 DOI: 10.14028/j.cnki.1003-3726.2024.23.293.
Electrochemical and Microwave Absorbing Properties of Polypyrrole Coated Silicon Carbide Aerogel Composites
Polypyrrole (PPy) is used as an electrode material for supercapacitors due to its high specific capacitance
high conductivity
high flexibility and structural diversity. It can be compounded with other materials to improve dielectric loss and absorption performance. PPy-coated silicon carbide (SiC) aerogel composites were synthesized by chemical
in-situ
polymerization
which effectively solved the problems of the decline of cycle stability of PPy-based supercapacitors induced by the ion doping/dedoping during the charging/discharging process. The electrochemical performance of the composite material was measured by the three-electrode system
and the electromagnetic parameters were tested with the vector network analyzer. The results show that the specific capacitance reaches 309.65 F·g
-1
at a current density of 0.5 A·g
-1
and the specific capacitance retention rate is 94.2% after 1000 cycles
indicating good cycle stability. The aerogel can maintain a height of 95% subjected to 100 repeated pressure. The compressive strength is 105 kPa. The effective absorption intensity at 2.2 GHz is 22.32 dB
while the value for PPy is only 8.99 dB
which effectively improve absorption intensity. Therefore
SiC/PPy composites are promising electrode materials for supercapacitors and electromagnetic wave absorbing materials.
Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy, 2018, 52, 441–473.
Sebestyén, V. Renewable and sustainable energy reviews: environmental impact networks of renewable energy power plants. Renew. Sustain. Energy Rev., 2021, 151, 111626.
Ma, X. R.; Jing, Z. F.; Feng, C. C.; Qiao, M. Z.; Xu, D. H. Research and development progress of porous foam-based electrodes in advanced electrochemical energy storage devices: a critical review. Renew. Sustain. Energy Rev., 2023, 173, 113111.
Ramírez, A. M. R.; Del Valle, M. A.; Ortega, E.; Díaz, F. R.; Gacitúa, M. A. Capacitors based on polypyrrole nanowire electrodeposits. Polymers, 2022, 14(24), 5476.
Xu, Q.; Wei, C. Z.; Fan, L. L.; Rao, W. D.; Xu, W. L.; Liang, H.; Xu, J. Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl. Surf. Sci., 2018, 460, 84–91.
汪杰. 聚吡咯及其复合材料的制备及性能研究. 合肥: 中国科学技术大学, 2017.
Samancı, M.; Daş, E.; Bayrakçeken Yurtcan, A. Carbon aerogel and their polypyrrole composites used as capacitive materials. Int. J. Energy Res., 2021, 45(2), 1729–1747.
Xu, J.; Wang, D. X.; Fan, L. L.; Yuan, Y.; Wei, W.; Liu, R. N.; Gu, S. J.; Xu, W. L. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org. Electron., 2015, 26, 292–299.
Wang, J. P.; Xu, Y. L.; Zhu, J. B.; Ren, P. G. Electro-chemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. J. Power Sources, 2012, 208, 138–143.
Kashani, H.; Chen, L. Y.; Ito, Y.; Han, J. H.; Hirata, A.; Chen, M. W. Bicontinuous nanotubular graphene-polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391–400.
Bae, S. G.; Oh, M.; Lee, Y.; Kim, S.; Jeong, Y. G.; Lee, J. M.; Kim, J.; Shin, D. G. Fabrication and high-temperature performance evaluation of silicon carbide-Hafnium carbide nanocomposite fiber. Ceram. Int., 2022, 48(9), 13295–13303.
Yang, H. J.; Yuan, J.; Li, Y.; Hou, Z. L.; Jin, H. B.; Fang, X. Y.; Cao, M. S. Silicon carbide powders: temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Commun., 2013, 163, 1–6.
Wang, X. W.; Yan, H. X.; Xue, R.; Qi, S. H. A Polypyrrole/CoFe2O4/hollow glass microspheres three-layer sandwich structure microwave absorbing material with wide absorbing bandwidth and strong absorbing capacity. J. Mater. Sci. Mater. Electron., 2017, 28(1), 519–525.
Kuang, J. L.; Qin, Q.; Xiao, T.; Hou, X. J.; Jiang, P.; Wang, Q.; Cao, W. B. Tunable dielectric permittivity and microwave absorption properties of Pt-decorated SiC nanowires prepared by magnetic sputtering. Mater. Lett., 2019, 245, 90–93.
Zhang, K.; Sun, M. X.; Jiang, W. C.; Wang, Y.; Wang, D. R.; Wu, F.; Xie, A. M.; Dong, W. A core-shell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Adv., 2016, 6(49), 43056–43059.
Hamra, A. A. B.; Lim, H. N.; Hafiz, S. M.; Kamaruzaman, S.; Rashid, S. A.; Yunus, R.; Altarawneh, M.; Jiang, Z. T.; Huang, N. M. Performance stability of solid-state polypyrrole-reduced graphene oxide-modified carbon bundle fiber for supercapacitor application. Electrochim. Acta, 2018, 285, 9–15.
Zhang, Y. Y.; Zhen, Z.; Zhang, Z. L.; Lao, J. C.; Wei, J. Q.; Wang, K. L.; Kang, F. Y.; Zhu, H. W. In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochim. Acta, 2015, 157, 134–141.
Tran, C. B.; Zondaka, Z.; Le, Q. B.; Velmurugan, B. K.; Kiefer, R. Polypyrrole with phosphor tungsten acid and carbide-derived carbon: change of solvent in electropolymerization and linear actuation. Materials, 2021, 14(21), 6302.
Zhang, J. T.; Zhao, X. S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C, 2012, 116(9), 5420–5426.
Liu, X. F.; Nie, X. Y.; Yu, R. H.; Feng, H. B. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy. Chem. Eng. J., 2018, 334, 153–161.
Quan, B.; Liang, X. H.; Ji, G. B.; Ma, J. N.; Ouyang, P. Y.; Gong, H.; Xu, G. Y.; Du, Y. W. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces. ACS Appl. Mater. Interfaces, 2017, 9(11), 9964–9974.
Lan, X. L.; Liang, C. Y.; Wu, M. S.; Wu, N.; He, L.; Li, Y. B.; Wang, Z. J. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves. J. Phys. Chem. C, 2018, 122(32), 18537–18544.
Wu, F.; Sun, M. X.; Chen, C. C.; Zhou, T.; Xia, Y. L.; Xie, A. M.; Shang, Y. F. Controllable coating of polypyrrole on silicon carbide nanowires as a core-shell nanostructure: a facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustain. Chem. Eng., 2019, 7(2), 2100–2106.