Zhang, N.; Wang, X. Y.; Chen, Y. P.; Li, C. Q.; Chen, L. D.; Wang, J. Study on the catalytic performance and its kinetics of ethylene oligomerization catalyzed by pyridinimine phthalocyanine nickel catalyst. Polym. Bull. (in Chinese), 2024, 37(5), 685–693
Zhang, N.; Wang, X. Y.; Chen, Y. P.; Li, C. Q.; Chen, L. D.; Wang, J. Study on the catalytic performance and its kinetics of ethylene oligomerization catalyzed by pyridinimine phthalocyanine nickel catalyst. Polym. Bull. (in Chinese), 2024, 37(5), 685–693 DOI: 10.14028/j.cnki.1003-3726.2024.23.361.
Study on the Catalytic Performance and Its Kinetics of Ethylene Oligomerization Catalyzed by Pyridinimine Phthalocyanine Nickel Catalyst
Hidajat, M. J.; Kwon, O.; Park, H.; Han, J.; Yun, G. N.; Hwang, D. W.Highly selective, energy-free, and environmentally friendly one-pot production of linear α-olefin from biomass-derived organic acid in a dual-bed catalyst system. Green Chem., 2022, 24(19), 7556–7573.
Salian, S. M.; Bagui, M.; Jasra, R. V.Industrially relevant ethylene trimerization catalysts and processes. Appl. Petrochem. Res., 2021, 11(3), 267–279.
Barman, S.; Jaseer, E. A.; Garcia, N.; Elanany, M.; Khawaji, M.; Xu, W.; Lin, S. B.; Alasiri, H.; Akhtar, M. N.; Theravalappil, R.A rational approach towards selective ethylene oligomerization via PNP-ligand design with an N-triptycene functionality. Chem. Commun. , 2022, 58(72), 10044–10047.
Yan, Z. P.; Bi, H. Q.; Ding, B. H.; Wang, H.; Xu, G. Y.; Dai, S. Y.A rigid-flexible double-layer steric strategy for ethylene (co)oligomerization with pyridine-imine Ni(II) and Pd(II) complexes. New J. Chem., 2022, 46(18), 8669–8678.
Kitushina, E. V.; Kozhina, E. P.; Piryazev, A. A.; Bedin, S. A.; Lobanov, A. V.Spectral properties of aluminum phthalocyanine immobilized on silver nanowire substrates. Bull. Russ. Acad. Sci. Phys., 2022, 86(12), 1478–1482.
Giddaerappa, Manjunatha, N.; Shantharaja, Hojamberdiev, M.; Sannegowda, L. K.Tetraphenol- phthalein cobalt(II) phthalocyanine polymer modified with multiwalled carbon nanotubes as an efficient catalyst for the oxygen reduction reaction. ACS Omega, 2022, 7(16), 14291–14304.
Wan, L. Y.; Zhao, K. M.; Wang, Y. C.; Wei, N.; Zhang, P. Y.; Yuan, J. Y.; Zhou, Z. Y.; Sun, S. G.Molecular degradation of iron phthalocyanine during the oxygen reduction reaction in acidic media. ACS Catal., 2022, 12(18), 11097–11107.
潘玉珍. 改性酞菁化合物的合成及其应用. 大连: 大连理工大学, 2000.
Long, G. S.; Snedeker, B.; Bartosh, K.; Werner, M. L.; Sen, A.Transition metal phthalocyanine and porphyrin complexes as catalysts for the polymerization of alkenes. Can. J. Chem., 2001, 79(5-6), 1026–1029.
Salehi, M. H.; Karimi, A. R.Novel octa-substituted metal(II) phthalocyanines bearing 2,6-di-tert-buthyl-phenol groups: Synthesis, characterization, electronic properties, aggregation behavior and their antioxidant activities as stabilizer for polypropylene and high density polyethylene. Polym. Degrad. Stabil., 2018, 151, 105–113.
Chen, L. D.; Ma, L. L.; Jiang, Y.; Liu, J. Y.; Li, C. Q.; Zhang, N.; Wang, J.Synthesis and characterization of iron, cobalt and nickel complexes bearing para-phenylene-linked pyridine imine ligand and their catalytic properties for ethylene oligomerization. Polym. Bull., 2021, 78(1), 415–432.
Zhang, N.; Wang, J. M.; Huo, H. L.; Chen, L. D.; Shi, W. G.; Li, C. Q.; Wang, J.Iron, cobalt and nickel complexes bearing hyperbranched iminopyridyl ligands: synthesis, characterization and evaluation as ethylene oligomerization catalysts. Inorg. Chim. Acta, 2018, 469, 209–216.