Wu, Y.; Chen, S. H.; Pan, Y.; Zheng, Z. H.; Ding, X. B. Research progress in constructing cyclodextrin-based shape memory polymers based on the supramolecular interaction. Polym. Bull. (in Chinese), 2024, 37(8), 1001–1010
Wu, Y.; Chen, S. H.; Pan, Y.; Zheng, Z. H.; Ding, X. B. Research progress in constructing cyclodextrin-based shape memory polymers based on the supramolecular interaction. Polym. Bull. (in Chinese), 2024, 37(8), 1001–1010 DOI: 10.14028/j.cnki.1003-3726.2024.24.003.
Research Progress in Constructing Cyclodextrin-based Shape Memory Polymers Based on the Supramolecular Interaction
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S.Shape memory polymers: past, present and future developments. Prog. Polym. Sci., 2015, 49-50, 3–33.
Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S.A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater., 2021, 33(6), e2000713.
Hu, J. L.; Zhu, Y.; Huang, H. H.; Lu, J.Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci., 2012, 37(12), 1720–1763.
Choi, S.; Kim, B.; Park, S.; Seo, J. H.; Ahn, S. K.Slidable cross-linking effect on liquid crystal elastomers: enhancement of toughness, shape-memory, and self-healing properties. ACS Appl. Mater. Interfaces, 2022, 14(28), 32486–32496.
Wang, J.; Li, J.; Li, N.; Guo, X. L.; He, L.; Cao, X.; Zhang, W. Y.; He, R. X.; Qian, Z. Y.; Cao, Y. P.; Chen, Y.A bottom-up approach to dual shape-memory effects. Chem. Mater., 2015, 27(7), 2439–2448.
Cui, Y. D.; Li, D.; Gong, C.; Chang, C. Y.Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano, 2021, 15(8), 13712–13720.
Yao, X. K.; Huang, P.; Nie, Z. H.Cyclodextrin-based polymer materials: from controlled synthesis to applications. Prog. Polym. Sci., 2019, 93, 1–35.
Seidi, F.; Jin, Y. C.; Xiao, H. N.Polycyclodextrins: synthesis, functionalization, and applications. Carbohydr. Polym., 2020, 242, 116277.
Tian, B. R.; Liu, Y. M.; Liu, J. Y.Smart stimuli-responsive drug delivery systems based on cyclodextrin: a review. Carbohydr. Polym., 2021, 251, 116871.
Seidi, F.; Shamsabadi, A. A.; Amini, M.; Shabanian, M.; Crespy, D.Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym. Chem., 2019, 10(27), 3674–3711.
Liu, Z. J.; Ye, L.; Xi, J. N.; Wang, J.; Feng, Z. G.Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog. Polym. Sci., 2021, 118, 101408.
Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A.Photoswitchable gel assembly based on molecular recognition. Nat. Commun., 2012, 3, 603.
Iijima, K.; Aoki, D.; Otsuka, H.; Takata, T.Synthesis of rotaxane cross-linked polymers with supramolecular cross-linkers based on γ-CD and PTHF macromonomers: the effect of the macromonomer structure on the polymer properties. Polymer, 2017, 128, 392–396.
Li, J.; Chen, B.; Wang, X.; Goh, S. H.Preparation and characterization of inclusion complexes formed by biodegradable poly(ε-caprolactone)-poly(tetrahydrofuran)-poly(ε-caprolactone) triblock copolymer and cyclodextrins. Polymer, 2004, 45(6), 1777–1785.
Luo, H. Y.; Liu, Y.; Yu, Z. J.; Zhang, S.; Li, B. J.Novel biodegradable shape memory material based on partial inclusion complex formation between α-cyclodextrin and poly(epsilon-caprolactone). Biomacromolecules, 2008, 9(10), 2573–2577.
Zhang, S.; Yu, Z. J.; Govender, T.; Luo, H. Y.; Li, B. J.A novel supramolecular shape memory material based on partial α-CD-PEG inclusion complex. Polymer, 2008, 49(15), 3205–3210.
Yu, Z. J.; Liu, Y.; Fan, M. M.; Meng, X. W.; Li, B. J.; Zhang, S.Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α-CD-PEG inclusion complex. J. Polym. Sci. Part B Polym. Phys., 2010, 48(9), 951–957.
Luo, H. Y.; Fan, M. M.; Yu, Z. J.; Meng, X. W.; Li, B. J.; Zhang, S.Preparation and properties of degradable shape memory material based on partial α-cyclodextrin-poly(ε-caprolactone) inclusion complex. Macromol. Chem. Phys., 2009, 210(8), 669–676.
Zhou, Y. F.; Song, Y. N.; Zhen, W. J.; Wang, W. T.The effects of structure of inclusion complex between β-cyclodextrin and poly(L-lactic acid) on its performance. Macromol. Res., 2015, 23(12), 1103–1111.
Feng, W.; Zhou, W. F.; Dai, Z. H.; Yasin, A.; Yang, H. Y.Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. J. Mater. Chem. B, 2016, 4(11), 1924–1931.
Fan, M. M.; Yu, Z. J.; Luo, H. Y.; Zhang, S.; Li, B. J.Supramolecular network based on the self-assembly of γ-cyclodextrin with poly(ethylene glycol) and its shape memory effect. Macromol. Rapid Commun., 2009, 30(11), 897–903.
Liu, G. Q.; Ding, X. B.; Cao, Y. P.; Zheng, Z. H.; Peng, Y. X.Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules, 2004, 37(6), 2228–2232.
Li, Z. H.; Pan, Y.; Zhang, P.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.A novel shape memory polymer based on conetworks. e-Polymers, 2009, 9(1), 025
Liu, T.; Li, J.; Pan, Y.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.A new approach to shape memory polymer: design and preparation of poly(methyl methacrylate) composites in the presence of star poly(ethylene glycol). Soft Matter, 2011, 7(5), 1641–1643.
Wang, Y. R.; Li, X. J.; Pan, Y.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.High-strain shape memory polymers with movable cross-links constructed by interlocked slide-ring structure. RSC Adv., 2014, 4(33), 17156–17160.
Li, X. J.; Wang, Y. R.; Wu, R. Q.; Pan, Y.; Zheng, Z. H.; Ding, X. B.Slide-ring shape memory polymers with movable cross-links. React. Funct. Polym., 2017, 119, 26–36.
Wu, R. Q.; Lai, J. J.; Pan, Y.; Zheng, Z. H.; Ding, X. B.High-strain slide-ring shape-memory polycaprolactone-based polyurethane. Soft Matter, 2018, 14(22), 4558–4568.
Yasin, A.; Zhou, W. F.; Yang, H. Y.; Li, H. Z.; Chen, Y.; Zhang, X. Y.Shape memory hydrogel based on a hydrophobically-modified polyacrylamide (HMPAM)/α-CD mixture via a host-guest approach. Macromol. Rapid Commun., 2015, 36(9), 845–851.
Pan, M.; Yuan, Q. J.; Gong, X. L.; Zhang, S.; Li, B. J.A tri-stimuli-responsive shape-memory material using host-guest interactions as molecular switches. Macromol. Rapid Commun., 2016, 37(5), 433–438.
Xiao, Y. Y.; Gong, X. L.; Kang, Y.; Jiang, Z. C.; Zhang, S.; Li, B. J.Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chem. Commun., 2016, 52(70), 10609–10612.
Xie, M. Q.; Wu, C.; Chen, C. Y.; Liu, Y.; Zhao, C. Z.Photo-adaptable shape memory hydrogels based on orthogonal supramolecular interactions. Polym. Chem., 2019, 10(35), 4852–4858.
Dong, Z. Q.; Cao, Y.; Yuan, Q. J.; Wang, Y. F.; Li, J. H.; Li, B. J.; Zhang, S.Redox- and glucose-induced shape-memory polymers. Macromol. Rapid Commun., 2013, 34(10), 867–872.
Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A.Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun., 2011, 2, 511.
Miyamae, K.; Nakahata, M.; Takashima, Y.; Harada, A.Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew. Chem. Int. Ed., 2015, 54(31), 8984–8987.
Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S.pH-induced shape-memory polymers. Macromol. Rapid Commun., 2012, 33(12), 1055–1060.
He, W. Y.; Zhou, D.; Gu, H.; Qu, R. S.; Cui, C. Q.; Zhou, Y. Y.; Wang, Y.; Zhang, X. R.; Wang, Q. H.; Wang, T. M.; Zhang, Y. M.A biocompatible 4D printing shape memory polymer as emerging strategy for fabrication of deployable medical devices. Macromol. Rapid Commun., 2023, 44(2), e2200553.
Roy, A.; Manna, K.; Ray, P. G.; Dhara, S.; Pal, S.β-cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor. ACS Appl. Mater. Interfaces, 2022, 14(15), 17065–17080.
Yang, H. L.; Li, S. N.; Zheng, J. X.; Chen, G. Q.; Wang, W. Q.; Miao, Y. Y.; Zhu, N. N.; Cong, Y.; Fu, J.Erasable, rewritable, and reprogrammable dual information encryption based on photoluminescent supramolecular host-guest recognition and hydrogel shape memory. Adv. Mater., 2023, 35(40), e2301300.
Research Progress of Shape Memory Poly(aryl ether ketone)
Research Progress on Self-repairing Gel of Multiple Supramolecular and Its Application Prospect in Oil Field
Application of Dynamic Mechanical Analysis in Characterization of Vitrimers
Preparation and Characterization of Cys-PVA/HEC Triple Shape Memory Hydrogel
Research Progress in Shape Memory Hydrogels
Related Author
GAO Ke-tian
TANG Zhang-zhang
YANG Jing
ZHANG Jian-qiang
WANG Ting-mei
WANG Qi-hua
ZHANG Yao-ming
Lin LI
Related Institution
College of Petroleum and Chemical Engineering, Lanzhou University of Technology
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Science and Technology on Wear and Protection of Materials
Shandong Key Laboratory of Oilfield Chemistry, Department of Petroleum Engineering, China University of Petroleum (East China)
Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education
Institute of Analysis and Testing (Beijing Center for Physical & Chemical Analysis), Beijing Academy of Science and Technology, Beijing Key Laboratory of Organic Materials Testing Technology & Quality Evaluation