浏览全部资源
扫码关注微信
1..中海油石化工程有限公司,济南 250101
2..北京理工大学材料学院,北京 100081
Published:20 September 2024,
Published Online:20 June 2024,
Received:02 February 2024,
Accepted:17 April 2024
移动端阅览
杨向东, 杨晶晶, 黄木华. 非光气途径合成多异氰酸酯的研究进展. 高分子通报, 2024, 37(9), 1190–1209
Yang, X. D.; Yang, J. J.; Huang, M. H. Recent progress on the non-phosgene synthesis of polyisocyanates. Polym. Bull. (in Chinese), 2024, 37(9), 1190–1209
杨向东, 杨晶晶, 黄木华. 非光气途径合成多异氰酸酯的研究进展. 高分子通报, 2024, 37(9), 1190–1209 DOI: 10.14028/j.cnki.1003-3726.2024.24.055.
Yang, X. D.; Yang, J. J.; Huang, M. H. Recent progress on the non-phosgene synthesis of polyisocyanates. Polym. Bull. (in Chinese), 2024, 37(9), 1190–1209 DOI: 10.14028/j.cnki.1003-3726.2024.24.055.
多异氰酸酯为聚氨酯弹性体、固体推进剂、胶黏剂、涂料、医药化工中间体等军民两用产品提供重要原料,支撑着现代工业文明的长足进步,改善着人类健康福祉。然而,多异氰酸酯的传统合成方法主要是通过多氨基化合物与光气反应转化而来,剧毒性光气的大量使用给环境造成了危害。为了从源头上实现绿色低碳的生产方式,促进人与自然和谐共生,迫切需要从本质上创新合成路径,发展多异氰酸酯的绿色制备技术。近年来,通过非光气途径合成异氰酸酯,或者通过非异氰酸酯途径制备高性能聚合物材料,已经成为研究的前沿方向之一。本文从氨基甲酸酯热分解脱醇反应、酰胺化合物的Hofmann重排反应、叠氮酰基化合物的Curtius重排反应、羟肟酸的Lossen重排反应、氰酸盐的
N
-取代反应以及硝基化合物的还原羰基化反应等途径概括了非光气法合成多异氰酸酯的最新进展情况。随着科学技术的不断进步和循环经济对可持续发展的要求不断提高,非光气途径制备多异氰酸酯及其聚氨酯将成为未来发展的潮流和趋势。
Polyisocyanates are important raw materials for milit
ary and civilian products such as solid propellants
adhesives
and coatings
supporting the rapid progress of modern industrial civilization. They are also important intermediates for drug synthesis
improving human health and well-being. However
the traditional syntheses of polyisocyanate are mainly through the reactions of polyamines with phosgene
which is highly toxic and harmful to the environment. In order to improve the green and low-carbon production from the source
promote harmonious coexistence between humans and nature
it is urgently necessary to innovate the synthesis path and develop green preparation technology for polyisocyanate. In recent years
the synthesis of isocyanates through non-phosgene methods has become a research frontier as an active intermediate for the synthesis of high-value-added derivatives. The latest progress in the non-phosgene synthesis of polyisocyanate is summarized through pathways such as dealchoholysis of carbonates through pyrolysis
Hofmann rearrangement of amides
Curtius rearrangement on acyl azides
Lossen rearrangement of hydroxamic acid
reductive carbonylation reaction on nitro compounds
N
-substitution of cyanates
and so on. With the increasing requirements of circular economy for sustainable development
the syntheses of polyisocyanates and their corresponding polyurethanes through non-phosgene pathways will attract more attention in the future.
多异氰酸酯非光气途径聚氨酯氨基甲酸酯循环经济
PolyisocyanateNon-phosgene processPolyurethaneCarbamateCircular economy
Niesiobędzka, J.; Datta, J.Challenges and recent advances in bio-based isocyanate production. Green Chem., 2023, 25(7), 2482–2504.
Peng, S. Q.; Yang, T. Y.; Fan, W. H.; Chi, S. M.; Kuang, B. Y.; Fan, L.; Li, X. D.; Huang, M. H.Flexible porous polynorbornenes with alkene linkage for decolorizing the highly reactive triisocyanate in ethyl acetate. Chem. Mater., 2022, 34(11), 5184–5193.
黄木华, 彭山青, 贾琼, 邓汉林, 罗贤升, 柴春鹏. 一种2,4,6-甲苯三异氰酸酯的制备方法. 中国专利, CN112125826B, 2020-09-16.
黄木华, 彭山青, 邓汉林, 贾琼. 一种胶黏剂及其制备方法和应用. 中国专利, CN113072907B, 2021-03-09.
Ganiu, M. O.; Nepal, B.; Van Houten, J. P.; Kartika, R.A decade review of triphosgene and its applications in organic reactions. Tetrahedron 2020,76 (47), 131553.
Mutlu, H.; Barner, L.Getting the terms right: green, sustainable, or circular chemistry?Macromol. Chem. Phys., 2022, 223(13), 2200111.
Kirchberg, A.; Khabazian Esfahani, M.; Röpert, M. C.; Wilhelm, M.; Meier, M. A. R.Sustainable synthesis of non-isocyanate polyurethanes based on renewable 2, 3-butanediol. Macromol. Chem. Phys., 2022, 223(13), 2200010.
Hayes, G.; Laurel, M.; MacKinnon, D.; Zhao, T. S.; Houck, H. A.; Becer, C. R.Polymers without petrochemicals: sustainable routes to conventional monomers. Chem. Rev., 2023, 123(5), 2609–2734.
Gomez-Lopez, A.; Elizalde, F.; Calvo, I.; Sardon, H.Trends in non-isocyanate polyurethane (NIPU) development. Chem. Commun., 2021, 57(92), 12254–12265.
Ragaini, F.Away from phosgene: Reductive carbonylation of nitroarenes and oxidative carbonylation of amines, understanding the mechanism to improve performance. Dalton Trans., 2009(32), 6251–6266.
Kreye, O.; Mutlu, H.; Meier, M. A. R.Sustainable routes to polyurethane precursors. Green Chem., 2013, 15(6), 1431–1455.
Wang, P. X.; Liu, S. M.; Deng, Y. Q.Important green chemistry and catalysis: non-phosgene syntheses of isocyanates-thermal cracking way. Chin. J. Chem., 2017, 35(6), 821–835.
Leitner, W.; Franciò, G.; Scott, M.; Westhues, C.; Langanke, J.; Lansing, M.; Hussong, C.; Erdkamp, E.Carbon2Polymer-chemical utilization of CO2 in the production of isocyanates. Chem. Ing. Tech., 2018, 90(10), 1504–1512.
Alfano, A. I.; Pelliccia, S.; Rossino, G.; Chianese, O.; Summa, V.; Collina, S.; Brindisi, M.Continuous-flow technology for chemical rearrangements: a powerful tool to generate pharmaceutically relevant compounds. ACS Med. Chem. Lett., 2023, 14(3), 326–337.
Ishihara, K.; Shioiri, T.; Matsugi, M.Synthesis of carbamoyl azides via the lossen rearrangement utilizing diphenyl phosphorazidate. Tetrahedron Lett., 2022, 95, 153727.
Wang, J. H.; Cao, Y. W.; Meng, Q. W.; Wang, Y. W.; Shi, H. B.; Feng, B. L.; Huang, Y.; Sun, Q.; He, L.Catalysis of synergistic reactions by host-guest assemblies: reductive carbonylation of nitrobenzenes. JACS Au, 2023, 3(8), 2166–2173.
Schemmer, B.; Kronenbitter, C.; Mecking, S.Thermoplastic polyurethane elastomers with aliphatic hard segments based on plant-oil-derived long-chain diisocyanates. Macromol. Mater. Eng., 2018, 303(4), 1700416.
Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F.On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev., 2013, 113(1), 80–118.
Greber, G.; Kricheldorf, H. R.A new synthesis of isocyanates and isothiocyanates. Angew. Chem. Int. Ed., 1968, 7(12), 941.
Valli, V. L. K.; Alper, H.A simple, convenient, and efficient method for the synthesis of isocyanates from urethanes. J. Org. Chem., 1995, 60(1), 257–258.
Butler, D. C. D.; Alper, H.Synthesis of isocyanates from carbamate esters employing boron trichloride. Chem. Commun., 1998(23), 2575–2576.
Uriz, P.; Serra, M.; Salagre, P.; Castillon, S.; Claver, C.; Fernandez, E.A new and efficient catalytic method for synthesizing isocyanates from carbamates. Tetrahedron Lett., 2002, 43(9), 1673–1676.
Sun, D. L.; Luo, J. Y.; Wen, R. Y.; Deng, J. R.; Chao, Z. S.Phosgene-free synthesis of hexamethylene-1, 6-diisocyanate by the catalytic decomposition of dimethylhexane-1, 6-dicarbamate over zinc-incorporated berlinite (ZnAlPO4). J. Hazard. Mater., 2014, 266, 167–173.
Lemouzy, S.; Delavarde, A.; Lamaty, F.; Bantreil, X.; Pinaud, J.; Caillol, S.Lignin-based bisguaiacol diisocyanate: a green route for the synthesis of biobased polyurethanes. Green Chem., 2023, 25(12), 4833–4839.
Ren, Y. M.; Rousseaux, S. A. L.Metal-free synthesis of unsymmetrical ureas and carbamates from CO2 and amines via isocyanate intermediates. J. Org. Chem., 2018, 83(2), 913–920.
Derasp, J. S.; Beauchemin, A. M.Rhodium-catalyzed synthesis of amides from functionalized blocked isocyanates. ACS Catal., 2019, 9(9), 8104–8109.
Davis, M. C.Safer conditions for the curtius rearrangement of 1,3,5-benzenetricarboxylic acid. Synth. Commun., 2007, 37(20), 3519–3528.
Ju, Z. F.; Yan, S. C.; Yuan, D. Q.De novo tailoring pore morphologies and sizes for different substrates in a urea-containing MOFs catalytic platform. Chem. Mater., 2016, 28(7), 2000–2010.
Zenner, M. D.; Xia, Y.; Chen, J. S.; Kessler, M. R.Polyurethanes from isosorbide-based diisocyanates. ChemSusChem, 2013, 6, 1182–1185.
Hojabri, L.; Kong, X. H.; Narine, S. S.Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J. Polym. Sci. A Polym. Chem., 2010, 48(15), 3302–3310.
de Haro, J. C.; Allegretti, C.; Smit, A. T.; Turri, S.; D’Arrigo, P.; Griffini, G.Biobased polyurethane coatings with high biomass content: tailored properties by lignin selection. ACS Sustain. Chem. Eng., 2019, 7(13), 11700–11711.
More, A. S.; Lebarbé, T.; Maisonneuve, L.; Gadenne, B.; Alfos, C.; Cramail, H.Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur. Polym. J., 2013, 49(4), 823–833.
Rajput, B. S.; Forman, A.; Halloran, M. W.; Phung Hai, T. A.; Scofield, G. B.; Burkart, M. D.Variation of aliphatic diisocyanates in bio-based TPUs. Macromolecules, 2023, 56(21), 8813–8822.
Phung Hai, T. A.; De Backer, L. J. S.; Cosford, N. D. P.; Burkart, M. D.Preparation of mono- and diisocyanates in flow from renewable carboxylic acids. Org. Process Res. Dev., 2020, 24(10), 2342–2346.
Sprecher, H.; Payán, M. N. P.; Weber, M.; Yilmaz, G.; Wille, G.Acyl azide synthesis and curtius rearrangements in microstructured flow chemistry systems. J. Flow Chem., 2012, 2(1), 20–23.
Shioiri, T.; Ninomiya, K.; Yamada, S.Diphenyl-phosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc., 1972, 94(17), 6203–6205.
Lebel, H.; Leogane, O.Boc-protected amines via a mild and efficient one-pot Curtius rearrangement. Org. Lett., 2005, 7(19), 4107–4110.
Lin, K.; Lu, H. J.DMAP catalyzed one-pot curtius rearrangement using 1,1-dimethyl-2,2,2-trichloroethoxy-carbonyl azide. Org. Lett., 2023, 25(24), 4534–4539.
Zhang, Y. P.; Ge, X.; Lu, H. J.; Li, G. G.Catalytic decarboxylative C-N formation to generate alkyl, alkenyl, and aryl amines. Angew. Chem. Int. Ed., 2021, 60(4), 1845–1852.
Miloserdov, F. M.; Grushin, V. V.Palladium-catalyzed aromatic azidocarbonylation. Angew. Chem. Int. Ed Engl., 2012, 51(15), 3668–3672.
Zhang, L. H.; Chung, J. C.; Costello, T. D.; Valvis, I.; Ma, P.; Kauffman, S.; Ward, R.The enantiospecific synthesis of an isoxazoline. A RGD mimic platelet GPIIb/IIIa antagonist. J. Org. Chem., 1997, 62(8), 2466–2470.
Yoshimura, A.; Luedtke, M. W.; Zhdankin, V. V.(Tosy-limino)phenyl-λ3-iodane as a reagent for the synthesis of methyl carbamates via Hofmann rearrangement of aromatic and aliphatic carboxamides. J. Org. Chem., 2012, 77(4), 2087–2091.
Wang, X.; Yang, P.; Hu, B.; Zhang, Q.; Li, D.Hypervalent iodine reagent-promoted hofmann-type rearrangement/carboxylation of primary amides. J. Org. Chem., 2021, 86(3), 2820–2826.
Gambacorta, G.; Baxendale, I. R.Continuous-flow Hofmann rearrangement using trichloroisocyanuric acid for the preparation of 2-benzoxazolinone. Org. Process Res. Dev., 2022, 26(2), 422–430.
Song, L. Y.; Meng, Y. F.; Zhao, T. C.; Liu, L. F.; Pan, X. H.; Huang, B. B.; Yao, H. L.; Lin, R.; Tong, R. B.Unified and green oxidation of amides and aldehydes for the Hofmann and Curtius rearrangements. Green Chem., 2024, 26(1), 428–438.
Thomas, M.; Alsarraf, J.; Araji, N.; Tranoy-Opalinski, I.; Renoux, B.; Papot, S.The Lossen rearrangement from free hydroxamic acids. Org. Biomol. Chem., 2019, 17(22), 5420–5427.
Strotman, N. A.; Ortiz, A.; Savage, S. A.; Wilbert, C. R.; Ayers, S.; Kiau, S.Revisiting a classic transformation: a lossen rearrangement initiated by nitriles and “pseudo-catalytic” in isocyanate. J. Org. Chem., 2017, 82(8), 4044–4049.
Jiang, Y.; Li, M.; Liu, S. X.; Li, R.; Zheng, Y. B.; Song, W. Z.; Zheng, N.Synthesis and application of thiocarbamates via thiol-dioxazolone modified Lossen rearrangement. Chem. Commun., 2022, 58(88), 12353–12356.
Zhang, S.; Ghosh, K. R.; Yao, Z.; Li, L. L.; Qin, A. R.; Qiao, W. Q.; Wang, Z. Y.Formation of reactive isocyanate group-containing polymers via Lossen rearrangement. Mater. Today Commun., 2022, 30, 103169.
Çaylı, G.; Küsefoğlu, S.Biobased polyisocyanates from plant oil triglycerides: synthesis, polymerization, and characterization. J. Appl. Polym. Sci., 2008, 109(5), 2948–2955.
Zaytsev, S. V.; Ivanov, K. L.; Skvortsov, D. A.; Bezzubov, S. I.; Melnikov, M. Y.; Budynina, E. M.Nucleophilic ring opening of donor-acceptor cyclopropanes with the cyanate ion: access to spiro[pyrrolidone-3,3'-oxindoles]. J. Org. Chem., 2018, 83(15), 8695–8709.
Du, S. Y.; Yang, Z. G.; Tang, J. H.; Chen, Z. K.; Wu, X. F.Synthesis of 3H-1,2,4-triazol-3-ones via NiCl2-promoted cascade annulation of hydrazonoyl chlorides and sodium cyanate. Org. Lett., 2021, 23(6), 2359–2363.
Vinogradova, E. V.; Fors, B. P.; Buchwald, S. L.Palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate: a practical synthesis of unsymmetrical ureas. J. Am. Chem. Soc., 2012, 134(27), 11132–11135.
Kumar, S. V.; Ma, D. W.Synthesis of N-(hetero)aryl carbamates via CuI/MNAO catalyzed cross-coupling of (hetero)aryl halides with potassium cyanate in alcohols. J. Org. Chem., 2018, 83(5), 2706–2713.
Tafesh, A. M.; Weiguny, J.A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev., 1996, 96(6), 2035–2052.
Hardy, W. B.; Bennett, R. P.The direct conversion of aromatic nitro compounds to isocyanates by carbon monoxide. Tetrahedron Lett., 1967, 8(11), 961–962.
Gasperini, M.; Ragaini, F.; Cazzaniga, C.; Cenini, S.Carbonylation of dinitrotoluene to dimethyl toluenedicarbamate; high efficiency of phosphorus acids as promoters for the palladium-phenanthroline catalytic system. Adv. Synth. Catal., 2005, 347(1), 105–120.
Yang, Q.; Robertson, A.; Alper, H.Efficient palladium/1, 10-phenanthroline-catalyzed reductive carbonylation of mono-and dinitroarenes to urethanes in phosphonium salt ionic liquids. Org. Lett., 2008, 10(21), 5079–5082.
Karpińska, M.; Skupińska, J.; Baran, P.Carbonylation of aromatic dinitro compounds with carbon monoxide to respective dicarbamates in the presence of the PdCl2/Fe/I2/Py catalytic system. J. Mol. Catal. A Chem., 2009, 303(1-2), 43–51.
Nguyen, T. T.; Tran, A. V.; Lee, H. J.; Baek, J.; Kim, Y. J.Palladium-catalyzed reductive carbonylation of nitrobenzene for producing phenyl isocyanate. Tetrahedron Lett., 2019, 60(50), 151310.
Padmanaban, S.; Ganesan, V.; Yoon, S.; Lee, Y.Reductive carbonylation of nitroarenes using a heterogenized phen-Pd catalyst. Inorg. Chem., 2022, 61(3), 1552–1561.
Le, H. V.; Ganem, B.Trifluoroacetic anhydride-catalyzed oxidation of isonitriles by DMSO: a rapid, convenient synthesis of isocyanates. Org. Lett., 2011, 13(10), 2584–2585.
Mirabella, S.; Petrucci, G.; Faggi, C.; Matassini, C.; Cardona, F.; Goti, A.Allyl cyanate/isocyanate rearrangement in glycals: stereoselective synthesis of 1-amino and diamino sugar derivatives. Org. Lett., 2020, 22(22), 9041–9046.
0
Views
61
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution