Du, K. C.; Liu, J. F.; Xiao, C.; Chen, Z. Y.; Zhao, L.; Zhang, L. P. Preparation and performance of polyaniline based electrochromic energy storage device. Polym. Bull. (in Chinese), 2024, 37(12), 1779–1790
Du, K. C.; Liu, J. F.; Xiao, C.; Chen, Z. Y.; Zhao, L.; Zhang, L. P. Preparation and performance of polyaniline based electrochromic energy storage device. Polym. Bull. (in Chinese), 2024, 37(12), 1779–1790 DOI: 10.14028/j.cnki.1003-3726.2024.24.147.
Preparation and Performance of Polyaniline Based Electrochromic Energy Storage Device
Electrochromic energy storage devices have both electrochromic and energy storage functions
and can indicate the energy storage status through real-time color changes. They have attracted attention in the fields of energy-efficient buildings and intelligent electronics. Polyaniline (PANI) has rich color changes and a high theoretical specific capacitance
and occupies a place in the fields of electrochromism and energy storage. In this study
in order to improve the capacitance of polyaniline
reactive blue 19 (RB19) with redox activity was add
ed when the polyaniline film was prepared via galvanostatic method
and polyaniline was doped by electrostatic interaction. The effects of the ratio of aniline to reactive blue 19 and the deposition time on the morphology and electrochemical performance of the polyaniline film were analyzed. The electrochromic energy storage device was assembled using indium-tin oxide (ITO) conductive glass with polyaniline film as the working electrode
ZnCl
2
as the electrolyte
and zinc flake as the counter electrode
and the performance was studied. The results show that the doping of reactive blue 19 greatly enhances the capacitance of polyaniline film. At a scan rate of 50 mV/s
the capacitance (
C
) of PANI-RB19
100:1(20min)
can reach 3.29 times that of PANI
(20min)
. At a current density of 0.1 mA·cm
−2
an area capacitance (
C
a
) of 32.41 mF·cm
−2
can be obtained
and a ten fold increase in current density results in a capacitance retention rate of 78.06%. The electrochromic energy storage device can generate 56.22% spectral modulation amplitude at 750 nm
and connecting the two devices in series can light up a red LED lights more than 3 h.
关键词
电致变色储能聚苯胺活性蓝19
Keywords
ElectrochromicEnergy storagePolyanilineReactive blue 19
references
Lu, J. L.; Song, H.; Li, S. N.; Wang, L.; Han, L.; Ling, H.; Lu, X. H. A poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol-gel assisted electropolymerization for electrochromic application. Thin Solid Films, 2015, 584, 353–358.
Platt, J. R. Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 1961, 34(3), 862–863.
Wang, Q. K.; Cao, S.; Meng, Q. C.; Wang, K.; Yang, T.; Zhao, J. L.; Zou, B. S. Robust and stable dual-band electrochromic smart window with multicolor tunability. Mater. Horiz., 2023, 10(3), 960–966.
Yeon, S. Y.; Seo, M.; Kim, Y.; Hong, H.; Chung, T. D. Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout. Biosens. Bioelectron., 2022, 203, 114002.
Chen, Y. Z.; Niu, C. H.; Wang, L.; Wang, T. X.; Yang, M. Q.; Zhang, S. Y.; Lv, Y. Multi-pattern polyaniline electrochromic device by controllable three-dimensional movement of ions. Opt. Mater., 2024, 147, 114605.
Wang, Z.; Wang, X. Y.; Cong, S.; Geng, F. X.; Zhao, Z. G. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Mater. Sci. Eng. R Rep., 2020, 140, 100524.
Cai, G. F.; Darmawan, P.; Cui, M. Q.; Wang, J. X.; Chen, J. W.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater., 2016, 6(4), 1501882.
Gong, H.; Li, A.; Fu, G. X.; Zhang, M. Y.; Zheng, Z. L.; Zhang, Q. Q.; Zhou, K. L.; Liu, J. B.; Wang, H. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films. J. Mater. Chem. A, 2023, 11(16), 8939–8949.
Li, Z. H.; Gong, L. J. Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion. Materials, 2020, 13(3), 548.
Fusalba, F.; Gouérec, P.; Villers, D.; Bélanger, D. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J. Electrochem. Soc., 2001, 148(1), A1–A6.
Devendrachari, M. C.; Shimoga, G.; Lee, S.-H.; Heo, Y. H.; Kotresh, H. M. N.; Thotiyl, M. O.; Kim, S. Y.; Choi, D. S. Anthraquinone-2-sulfonic acid-loaded polyaniline nanostructures: construction of symmetric supercapacitor electrodes thereof. J. Energy Storage,2022, 56(B), 106033.
He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7(11), 1601920.
Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater., 2020, 5, 5–19.
Wang, Y.; Zhong, X. L.; Liu, X. Q.; Lu, Z. L.; Su, Y. J.; Wang, M. Y.; Diao, X. G. A fast self-charging and temperature adaptive electrochromic energy storage device. J. Mater. Chem. A, 2022, 10(8), 3944–3952.
Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468), eaan8285.
Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci., 2013, 6(4), 1185–1191.
Wang, D. H.; Wang, L. F.; Liang, G. J.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, J. B.; Zhi, C. Y. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano, 2019, 13(9), 10643–10652.