Fan, J. X.; Chen, D. X.; Song, Y.; Li, G. L. Synthesis of recyclable self-healing polyurethane. Polym. Bull. (in Chinese), 2024, 37(11), 1581–1588 DOI: 10.14028/j.cnki.1003-3726.2024.24.190.
A self-healing polyurethane which can be degradable was prepared by introducing hierarchical hydrogen bonds and acylhydrazone bonds into the polyurethane molecular chains. On one hand
the hydrogen bonds between chains provided self-healing function for polyurethane. On the other hand
the pH-responsive acylhydrazone bonds endowed materials with recyclable properties. With the increase of the content of acylhydrazone bonds in polymer chains
the mechanical properties of the material were enhanced
and the tensile strength increased from 23.9 MPa to 54.3 MPa. Mechanical performance tests showed that polyurethane materials exhibited good healing performance
with a healing efficiency of 91.6% at 35 ℃. The self-healing mechanism was explored through variable temperature Fourier transform infrared (FTIR) spectroscopy. The polymer materials with self-healing and recyclable properties are significant for the reduction of waste for future low-carbon society.
关键词
自修复聚氨酯回收
Keywords
Self-healingPolyurethaneRecyclable
references
Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J.Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed., 2013, 52(36), 9422-9441.
Wang, H. R.; Li, T.; Li, J.; Zhao, R. H.; Ding, A.; Xu, F. J.Structural engineering of polyurethanes for biomedical applications. Prog. Polym. Sci., 2024, 151, 101803.
Chen, Q.; Li, X. Y.; Yang, Z. Y.; Meng, X. Q.; Zhao, Y. H.; Kang, M. Q.; Li, Q. F.; Wang, J. Z.; Wang, J. W.; Wang, J. Y.The reinforcement of polyurethane by mini-sized graphene with superior performances. Chem. Eng. J., 2024, 482, 148668.
Qin, Z. W.; Yang, Y.; Tian, Q. L.; Mi, H. Y.; Li, H.; Guo, R. H.; Wang, Y.; Liu, C. T.; Shen, C. Y.Strain-hardening, impact protective and self-healing supra-molecular polyurethane nanocomposites enabled by quadruple H-bonding, disulfide bonds and nanoparticles. Chem. Eng. J., 2023, 467, 143434.
Lee, S. M.; Lee, Y. R.; Kim, S. J.; Lee, J. S.; Min, K.Recent advances and challenges in the biote-chnological upcycling of plastic wastes for constr-ucting a circular bioeconomy. Chem. Eng. J., 2023, 454, 140470.
Datta, J.; Kopczyńska, P.From polymer waste to potential main industrial products: actual state of recycling and recovering. Crit. Rev. Environ. Sci. Technol., 2016, 46(10), 905-946.
Zhang, E. D.; Liu, X. H.; Liu, Y. C.; Shi, J.; Li, X. B.; Xiong, X. Y.; Xu, C. G.; Wu, K.; Lu, M. G.Highly stretchable, bionic self-healing waterborne polyurethane elastic film enabled by multiple hydrogen bonds for flexible strain sensors. J. Mater. Chem. A, 2021, 9(40), 23055-23071.
Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W. G.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; MacKay, M. E.; Hamley, I. W.; Rowan, S. J.A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc., 2010, 132(34), 12051-12058.
Cui, C. H.; Wang, F.; Chen, X. X.; Xu, T.; Li, Z.; Chen, K. X.; Guo, Y. Z.; Cheng, Y. L.; Ge, Z. S.; Zhang, Y. F.Covalent adaptable networks with dual dynamic covalent bonds for self-repairing infrared transmitting materials. Adv. Funct. Mater., 2024, 34(24), 2315469.
Watson, J. D.; Crick, F. H.Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature, 1953, 171(4356), 737-738.
Kuhl, N.; Bode, S.; Bose, R. K.; Vitz, J.; Seifert, A.; Hoeppener, S.; Garcia, S. J.; Spange, S.; van der Zwaag, S.; Hager, M. D.; Schubert, U. S.Acylhy-drazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater., 2015, 25(22), 3295-3301.
Yang, W. J.; Zhu, Y. L.; Liu, T. X.; Puglia, D.; Kenny, J. M.; Xu, P. W.; Zhang, R.; Ma, P. M.Multiple structure reconstruction by dual dynamic crosslinking strategy inducing self-reinforcing and toughening the polyurethane/nanocellulose elastomers. Adv. Funct. Mater., 2023, 33(12), 2213294.
Ma, X. J.; Yue, H. M.; Huang, M. M.; Huang, G. S.; Yao, C. X.; Wu, Y. H.; He, S. Q.; Liu, H.; Liu, W. T.; Zhu, C. S.Colorless, transparent, and shape memory polyurethane networks with high strength and recyclability. J. Appl. Polym. Sci., 2024, 141(1), e54758.
Liu, Z. H.; Fang, Z. Z.; Zheng, N.; Yang, K. X.; Sun, Z.; Li, S. J.; Li, W.; Wu, J. J.; Xie, T.Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat. Chem., 2023, 15(12), 1773-1779.
Liu, B. Y.; Westman, Z.; Richardson, K.; Lim, D.; Stottlemyer, A. L.; Farmer, T.; Gillis, P.; Vlcek, V.; Christopher, P.; Abu-Omar, M. M.Opportunities in closed-loop molecular recycling of end-of-life polyurethane. ACS Sustain. Chem. Eng., 2023, 11(16), 6114-6128.
Li, Z. Q.; Zhu, Y. L.; Niu, W. W.; Yang, X.; Jiang, Z. Y.; Lu, Z. Y.; Liu, X. K.; Sun, J. Q.Healable and recyclable elastomers with record-high mechanical robustness, unprecedented crack tolerance, and superhigh elastic restorability. Adv. Mater., 2021, 33(27), 2101498.
Yuan, Q.; Zhou, T.; Li, L.; Zhang, J. H.; Liu, X. F.; Ke, X. L.; Zhang, A. M.Hydrogen bond breaking of TPU upon heating: understanding from the viewpoints of molecular movements and enthalpy. RSC Adv., 2015, 5(39), 31153-31165.
Deng, G. H.; Li, F. Y.; Yu, H. X.; Liu, F. Y.; Liu, C. Y.; Sun, W. X.; Jiang, H. F.; Chen, Y. M.Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett., 2012, 1(2), 275-279.
Exploratory Teaching Practice on Research Methods of Polymer Materials: Polyurethane Materials as Example
Research Progress on Polyolefin Covalent Adaptable Networks
Self-healing Functional Polymers Triggered via External Stimuli
Recent Progress on the Non-phosgene Synthesis of Polyisocyanates
Preparation and Self-healing Properties of New Aliphatic Polycarbonate Elastomers with Physical Crosslinking and π-π-Conjugated Synergy
Related Author
YOU Yang
LI Yun-qi
QI Xin
ZHANG Ze-ping
RONG Min-zhi
ZHANG Ming-qiu
YANG Xiang-dong
YANG Jing-jing
Related Institution
Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University
Sinopec (Beijing) Research Institute of Chemical Industry Co, Ltd
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Key Laboratory of High Performance Polymer Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University
School of Materials Science and Engineering, Beijing Institute of Technology