浏览全部资源
扫码关注微信
大连理工大学化工学院,精细化工国家重点实验室,大连 116024
Published:20 December 2024,
Published Online:24 September 2024,
Received:05 July 2024,
Accepted:01 September 2024
移动端阅览
李一凡,孙浩楠,闫宇,林琪芸,宁志鹏,陈令成,肖义. 酚羟基取代的螺芴-呫吨型聚酰亚胺改性氰酸酯树脂固化体系的研究. 高分子通报, 2024, 37(12), 1768–1778
Li, Y. F.; Sun, H. N.; Yan, Y.; Lin, Q. Y.; Ning, Z. P.; Chen, L. C.; Xiao. Y. Study on the curing system of phenolic hydroxyl-substituted spirofluorene-xanthene-type polyimide-modified cyanate ester resin. Polym. Bull. (in Chinese), 2024, 37(12), 1768–1778
李一凡,孙浩楠,闫宇,林琪芸,宁志鹏,陈令成,肖义. 酚羟基取代的螺芴-呫吨型聚酰亚胺改性氰酸酯树脂固化体系的研究. 高分子通报, 2024, 37(12), 1768–1778 DOI: 10.14028/j.cnki.1003-3726.2024.24.196.
Li, Y. F.; Sun, H. N.; Yan, Y.; Lin, Q. Y.; Ning, Z. P.; Chen, L. C.; Xiao. Y. Study on the curing system of phenolic hydroxyl-substituted spirofluorene-xanthene-type polyimide-modified cyanate ester resin. Polym. Bull. (in Chinese), 2024, 37(12), 1768–1778 DOI: 10.14028/j.cnki.1003-3726.2024.24.196.
氰酸酯树脂(cyanate ester resin
CE)具有优异的机械性能、良好的热稳定性和极小的尺寸收缩率,广泛用于电子封装等领域。本文利用合成的酚羟基取代的螺芴-呫吨型全刚性聚酰亚胺(PI-OH)对双酚A型氰酸酯树脂(bisphenol A cyanate ester
BADCy)进行改性。研究发现,PI-OH侧链上的酚羟基可以显著降低BADCy的固化温度,与未改性树脂相比,固化放热峰值温度降低了约142 ℃。室温下,PI-OH(10%)/BADCy的储能模量和杨氏模量分别为2614 MPa和5010 MPa,与纯BADCy相比,分别提高了34%和10.2%。此外,PI-OH(8%)/BADCy的拉伸强度和拉伸模量分别提高了63.9%和128.4%,虽然玻璃化转变温度(
T
g
)略有下降,但其热降解温度(
T
d5%
)和统计耐热指数(
T
s
)均得到提升。同时,由于PI-OH侧链含有大量疏水性的三氟甲基基团,PI-OH(10%)/BADCy体系的吸水率仅为0.73%,降低了47.9%。这一进展对于降低BADCy树脂的固化温度、制备具有良好热稳定性和机械性能的氰酸酯树脂材料具有重要意义。
Cyanate ester resins (CE)
which have excellent mechanical properties
good thermal stability and very small dimensional shrinkage
are widely used in electronic packaging and other fields. In this study
the synthesized phenolic hydroxyl-substituted spirofluorene-xanthene-type fully rigid polyimide (PI-OH) was used to modify bisphenol A-type cyanate ester resin (BADCy). It was found that the phenolic hydroxyl groups on the side chain of PI-OH could significantly reduce the curing temperature of BADCy
and the peak exothermic temperature of curing was reduced by about 142 ℃ compared with that of the unmodified resin. At room temperature
the energy storage modulus and Young’s modulus of PI-OH(10%)/BADCy were 2614 MPa and 5010 MPa
respectively
which were increased by 34% and 10.2%
respectively
compared with those of pure BADCy. In addition
the tensile strength and tensile modulus of PI-OH(8%)/BADCy were increased by 63.9% and 128.4%
respectively
and its thermal degradation temperature (
T
d5%
) and statistical heat resistance index (
T
s
) were enhanced
although the glass transition temperature (
T
g
) was slightly decreased. Meanwhile
the water absorption of the PI-OH(10%)/BADCy system was only 0.73%
which was reduced by 47.9%
due to the large number of hydrophobic trifluoromethyl groups in the side chain of PI-OH. This progress is of great importance for the production of low-temperature curable cyanate ester resin materials with good thermal stability and mechanical properties.
酚羟基聚酰亚胺双酚A型氰酸酯固化温度耐高温
Phenol hydroxyl polyimideBisphenol A cyanate esterCuring temperatureHigh temperature resistance
Zhang, X. Y.; Wang, F.; Zhu, Y. P.; Qi, H. M. Cyanate ester composites containing surface functionalized BN particles with grafted hyperpolyarylamide exhibiting desirable thermal conductivities and a low dielectric constant. RSC Adv., 2019, 9(62), 36424–36433.
Lin, Y.; Song, M. Effect of polyhedral oligomeric silsesquioxane nanoparticles on thermal decomposition of cyanate ester resin. React. Funct. Polym., 2018, 129, 58–63.
Wan, L.; Zhang, X.; Wu, G. L.; Feng, A. L. Thermal conductivity and dielectric properties of bismaleimide/cyanate ester copolymer. High Volt., 2017, 2(3), 167–171.
Chao, F.; Liang, G. Z.; Kong, W. F.; Zhang, X. Study of dielectric property on BaTiO3/BADCy composite. Mater. Chem. Phys., 2008, 108(2-3), 306–311.
Koh, H. C. Y.; Dai, J.; Tan, E.; Liang, W. R. Catalytic effect of 2, 2’-diallyl bisphenol A on thermal curing of cyanate esters. J. Appl. Polym. Sci., 2006, 101(3), 1775–1786.
Ruiz, E.; Trochu, F. Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos. Part A Appl. Sci. Manuf., 2005, 36(6), 806–826.
Baştürk, E.; Şen, F.; Kahraman, M. V.; Madakbaş, S. Bisphenol A (BADCy)/bisphenol P (BPDCy) cyanate ester/colemanite composites: synthesis and charac-terization. Polym. Bull., 2015, 72(7), 1611–1623.
Bauer, J.; Bauer, M. Cyanate ester based resin systems for snap-cure applications. Microsyst. Technol., 2002, 8(1), 58–62.
Mathew, D.; Reghunadhan Nair, C. P.; Krishnan, K.; Ninan, K. N. Catalysis of the cure reaction of bisphenol A dicyanate. A DSC study. J. Polym. Sci. Part A Polym. Chem., 1999, 37(8), 1103–1114.
Li, J. W.; Wu, Z. X.; Huang, C. J.; Li, L. F. Gamma irradiation effects on cyanate ester/epoxy insulation materials for superconducting magnets. Fusion Eng. Des., 2014, 89(12), 3112–3116.
Liang, G. Z.; Ren, P. G.; Zhang, Z. P.; Lu, T. L. Effect of the epoxy molecular weight on the properties of a cyanate ester/epoxy resin system. J. Appl. Polym. Sci., 2006, 101(3), 1744–1750.
Liu, T.; Li, J. H.; Xiao, J.; Tian, W. P. Thermal and mechanical evaluation of cyanate ester resin catalyzed by nonylphenol and stannous octoate. J. Appl. Polym. Sci., 2016, 133(40), 43959.
Mathew, D.; Reghunadhan Nair, C. P.; Ninan, K. N. Bisphenol A dicyanate–novolac epoxy blend: cure characteristics, physical and mechanical properties, and application in composites. J. Appl. Polym. Sci., 1999, 74(7), 1675–1685.
Hamerton, I.; Takeda, S. A study of the polymerization of novel cyanate ester/acrylate blends. Polymer, 2000, 41(5), 1647–1656.
Harismendy, I.; Del Río, M.; Eceiza, A.; Gavalda, J.; Gómez, C. M.; Mondragon, I. Morphology and thermal behavior of dicyanate ester-polyetherimide semi-IPNS cured at different conditions. J. Appl. Polym. Sci., 2000, 76(7), 1037–1047.
Harismendy, I.; Del Río, M.; Marieta, C.; Gavalda, J.; Mondragon, I. Dicyanate ester-polyetherimide semi-interpenetrating polymer networks. II. Effects of morphology on the fracture toughness and mechanical properties. J. Appl. Polym. Sci., 2001, 80(14), 2759–2767.
Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci., 2012, 37(7), 907–974.
Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in polyimide-based materials for space applications. Adv. Mater., 2019, 31(18), 1807738.
Liaw, D. J.; Liaw, B. Y.; Li, L. J.; Sillion, B.; Mercier, R.; Thiria, R.; Sekiguchi, H. Synthesis and characterization of new soluble polyimides from 3,3',4,4'-benzhydrol tetracarboxylic dianhydride and various diamines. Chem. Mater., 1998, 10(3), 734–739.
Rothman, L. B. Properties of thin polyimide films. J. Electrochem. Soc., 1980, 127(10), 2216–2220.
Que, X. F.; Yan, Y. R.; Qiu, Z. M.; Wang, Y. Synthesis and characterization of trifluoromethyl-containing polyimide-modified epoxy resins. J. Mater. Sci., 2016, 51(24), 10833–10848.
Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed., 2010, 49(45), 8444–8448.
Izu, K.; Tokoro, Y.; Oyama, T. Simultaneous improvement of mechanical properties and curing temperature of cyanate ester resin by in situ generated modifier polymer having phenolic OH group. Polymer, 2020, 202, 122611.
Wu, F.; Song, B.; Hah, J.; Tuan, C. C.; Moon, K. S.; Wong, C. P. Polyimide incorporated cyanate ester/epoxy copolymers for high-temperature molding compounds. J. Polym. Sci. Part A Polym. Chem., 2018, 56(21), 2412–2421.
Jiang, W. X.; Zhang, X. H.; Chen, D.; Ma, Y. H.; Yang, W. T. High performance low-k and wave-transparent cyanate ester resins modified with a novel bismaleimide hollow polymer microsphere. Compos. Part B Eng., 2021, 222, 109041.
Li, Y. F.; Li, J. H.; Zhang, W. H.; Lin, Q. Y.; Chen, L. C.; Weng, Z. H.; Xiao, Y. Rigid and crosslinkable polyimide curing epoxy resin with enhanced comprehensive performances. Polymer, 2024, 297, 126836.
He, J.; Hou, D. F.; Ma, H. B.; Li, X. Y.; Li, D. Preparation of phosphorus-containing cyanate resin with low curing temperature while excellent flame resistance and dielectric properties. J. Macromol. Sci. Part A, 2019, 56(7), 629–639.
Ma, J. X.; Lei, X. F.; Tian, D.; Yuan, L. J.; Liao, C. S. Curing behavior and network formation of cyanate ester resin/polyethylene glycol. J. Appl. Polym. Sci., 2015, 132(15), 41841.
Qi, M.; Xu, Y. J.; Rao, W. H.; Luo, X.; Chen, L.; Wang, Y. Z. Epoxidized soybean oil cured with tannic acid for fully bio-based epoxy resin. RSC Adv., 2018, 8(47), 26948–26958.
Kissinger, H. E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand., 1956, 57(4), 2172.
Wang, S.; Ma, S. Q.; Xu, C. X.; Liu, Y.; Dai, J. Y.; Wang, Z. B.; Liu, X. Q.; Chen, J.; Shen, X. B.; Wei, J. J.; Zhu, J. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties. Macromolecules, 2017, 50(5), 1892–1901.
Wan, J. T.; Zhao, J. Q.; Gan, B.; Li, C.; Molina-Aldareguia, J.; Zhao, Y.; Pan, Y. T.; Wang, D. Y. Ultrastiff biobased epoxy resin with high Tg and low permittivity: from synthesis to properties. ACS Sustain. Chem. Eng., 2016, 4(5), 2869–2880.
Dai, J. F.; Li, B. Synthesis, thermal degradation, and flame retardance of novel triazine ring-containing macromolecules for intumescent flame retardant polypropylene. J. Appl. Polym. Sci., 2010, 116(4), 2157–2165.
Glaris, P.; Coulon, J. F.; Dorget, M.; Poncin-Epaillard, F. Fluorinated epoxy resin as a low adhesive mould for composite material. Compos. Part B Eng., 2014, 63, 94–100.
Miccio, L. A.; Fasce, D. P.; Schreiner, W. H.; Montemartini, P. E.; Oyanguren, P. A. Influence of fluorinated acids bonding on surface properties of crosslinked epoxy-based polymers. Eur. Polym. J., 2010, 46(4), 744–753.
0
Views
2
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution