浏览全部资源
扫码关注微信
1.天津工业大学纺织科学与工程学院和省部共建分离膜与膜过程国家重点实验室,天津 300387
2.新疆大学化工学院,乌鲁木齐 830046
3.沧州市天津工业大学研究院,沧州 610000
Published:20 December 2024,
Published Online:12 September 2024,
Received:06 July 2024,
Accepted:23 August 2024
移动端阅览
张嘉滢, 宋丹青, 刘义, 郑柳春. 功能性非异氰酸酯聚氨酯的研究进展. 高分子通报, 2024, 37(12), 1731–1739
Zhang, J. Y.; Song, D. Q.; Liu, Y.; Zheng, L. C. Research progress of functional non-isocyanate polyurethane. Polym. Bull. (in Chinese), 2024, 37(12), 1731–1739
张嘉滢, 宋丹青, 刘义, 郑柳春. 功能性非异氰酸酯聚氨酯的研究进展. 高分子通报, 2024, 37(12), 1731–1739 DOI: 10.14028/j.cnki.1003-3726.2024.24.199.
Zhang, J. Y.; Song, D. Q.; Liu, Y.; Zheng, L. C. Research progress of functional non-isocyanate polyurethane. Polym. Bull. (in Chinese), 2024, 37(12), 1731–1739 DOI: 10.14028/j.cnki.1003-3726.2024.24.199.
聚氨酯综合性能优异
是日常生活和工业中最常用的聚合物材料之一。传统的聚氨酯主要是由多元醇和剧毒的二异氰酸酯或多异氰酸酯的反应来制备。在当前可持续发展的背景下
非异氰酸酯路线合成功能性聚氨酯因制备过程中不使用有毒的异氰酸酯原料
同时又能够满足市场多样化和人们日益增长的功能需求而备受重视。本综述总结了具有应用前景的非异氰酸酯路线制备聚氨酯
详细介绍了以环碳酸酯和碳酸二甲酯为原料的反应路线及其优缺点
并对功能性非异氰酸酯聚氨酯在自修复、形状记忆、可再加工和可粘接性等功能领域的应用研究进展进行了详细探讨,最后对其未来发展方向和趋势进行了展望。
Polyurethanes are among the most commonly used polymeric materials in daily life and industry due to their excellent combined properties. Conventional polyurethanes are mainly prepared by the reaction of polyols and highly toxic diisocyanates or polyisocyanates. In the current context of sustainable development
functional non-isocyanate polyurethanes are highly valued because they are prepared without the use of toxic isocyanate raw materials
and at the same time
they can meet the growing demand and market variety. In this review
the preparation routes of non-isocyanate polyurethanes with application prospects were summarized
and reaction routes based on cyclic carbonate and dimethyl carbonate
as well as their advantages and disadvantages
were discussed in detail. The application progress of functional non-isocyanate polyurethanes in fields of self-healing materials
shape memory materials
reprocessable materials and adhesion was also discussed in detail
and the future development direction and trend were prospected.
非异氰酸酯聚氨酯功能性环境友好
Non-isocyanatePolyurethaneFunctionalityEnvironmentally friendly
Madbouly, S. A.; Otaigbe, J. U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci., 2009, 34(12), 1283–1332.
Rokicki, G.; Parzuchowski, P. G.; Mazurek, M. Non-isocyanate polyurethanes: Synthesis, properties, and applications. Polym. Adv. Technol., 2015, 26(7), 707–761.
Musk, A. W.; Peters, J. M.; Wegman, D. H. Isocyanates and respiratory disease: current status. Am. J. Ind. Med., 1988, 13(3), 331–349.
Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev., 2013, 113(1), 80–118.
马雪全, 李丽霞, 胡海青, 韩立静, 张若愚. 非异氰酸酯聚氨酯的可持续性发展综述. 聚氨酯工业, 2023, 38(2), 1–4.
杨玉姿, 徐丹, 雍奇文, 刘琦, 李海军. 非异氰酸酯聚氨酯研究综述. 聚氨酯工业, 2020, 35(5), 5–8.
潘冬冬. 氨基甲酸酯合成线性非异氰酸酯型聚氨酯研究. 博士学位论文, 上海: 华东理工大学. 2014.
谢琦琦, 宋丹青, 沈紫云, 刘义, 郑柳春, 李春成. 非异氰酸酯聚氨酯研究进展. 聚氨酯工业, 2024, 39(3), 1–5.
Choong, P. S.; Rusli, W.; Seayad, A. M.; Seayad, J.; Jana, S. Crosslinked succinic acid based non-isocyanate polyurethanes for corrosion resistant protective coatings. Prog. Org. Coat., 2024, 186, 107961.
Ling, Z. C.; Zhou, Q. X. Synthesis and properties of linseed oil-based waterborne non-isocyanate polyurethane coating. Green Chem., 2023, 25(23), 10082–10090.
Li, R.; Zhang, P.; Liu, T.; Muhunthan, B.; Xin, J. N.; Zhang, J. W. Use of hempseed-oil-derived polyacid and rosin-derived anhydride acid as cocuring agents for epoxy materials. ACS Sustain. Chem. Eng., 2018, 6(3), 4016–4025.
Besse, V.; Auvergne, R.; Carlotti, S.; Boutevin, G.; Otazaghine, B.; Caillol, S.; Pascault, J. P.; Boutevin, B. Synthesis of isosorbide based polyurethanes: an isocyanate free method. React. Funct. Polym., 2013, 73(3), 588–594.
Shen, Z. Y.; Zhang, J.; Zhu, W. X.; Zheng, L. C.; Li, C. C.; Xiao, Y. N.; Liu, J. J.; Wu, S. H.; Zhang, B. A solvent-free route to non-isocyanate poly(carbonate urethane) with high molecular weight and competitive mechanical properties. Eur. Polym. J., 2018, 107, 258–266.
Kathalewar, M.; Sabnis, A.; D’Mello, D. Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J., 2014, 57, 99–108.
Rius-Ruiz, F. X.; Bejarano-Nosas, D.; Blondeau, P.; Riu, J.; Rius, F. X. Disposable planar reference electrode based on carbon nanotubes and polyacrylate membrane. Anal. Chem., 2011, 83(14), 5783–5788.
Baba, T.; Kobayashi, A.; Kawanami, Y.; Inazu, K.; Ishikawa, A.; Echizenn, T.; Murai, K.; Aso, S.; Inomata, M. Characteristics of methoxycarbonylation of aromatic diamine with dimethyl carbonate to dicarbamate using a zinc acetate catalyst. Green Chem., 2005, 7(3), 159–165.
Duval, C.; Kébir, N.; Charvet, A.; Martin, A.; Burel, F. Synthesis and properties of renewable nonisocyanate polyurethanes (NIPUs) from dimethylcarbonate. J. Polym. Sci. Part A Polym. Chem., 2015, 53(11), 1351–1359.
Wolosz, D.; Parzuchowski, P. G.; Świderska, A. Synthesis and characterization of the non-isocyanate poly(carbonate-urethane)s obtained via polycondensation route. Eur. Polym. J., 2021, 155, 110574.
郑柳春, 宋丹青, 范世豪. 一种生物基非异氰酸酯型聚氨酯及其制备方法. 中国, CN116903854B, 2023-12-12.
郑柳春, 谢琦琦, 刘义, 宋丹青, 朱世凡. 一种尿素基聚酰胺聚脲及其制备方法.中国, CN117247541, 2023-12-19.
Song, D. Q.; He, J.; Xie, Q. Q.; Lv, X. D.; Liu, Y.; Zheng, L. C. Nonisocyanate polyurethanes originated from biobased isosorbide with good combined properties. ACS Appl. Polym. Mater., 2024, 6(14), 8133–8141.
Shen, Z.; Zheng, L.; Song, D.; Liu, Y.; Li, C.; Liu, J.; Xiao, Y.; Wu, S.; Zhou, T.; Zhang, B.; Lv, X.; Mei, Q. A non-isocyanate route to poly(ether urethane): synthesis and effect of chemical structures of hard segment. Polymers, 2022, 14(10), 2039.
Wang, Z.; Zhang, X.; Zhang, L. Q.; Tan, T. W.; Fong, H. Nonisocyanate biobased poly(ester urethanes) with tunable properties synthesized via an environment-friendly route. ACS Sustain. Chem. Eng., 2016, 4(5), 2762–2770.
Liu, X. N.; Wang, Y. M.; Li, X. Y.; Zhang, J. Y.; Zhao, J. B. High-performance epoxy hybrid non-isocyanate polyurethanes prepared from diol-cyclocarbonation bisphenol A dicyclocarbonate. Polym. Eng. Sci., 2023, 63(9), 3025–3036.
Dong, J. C.; Liu, B. Y.; Ding, H. N.; Shi, J. B.; Liu, N.; Dai, B.; Kim, I. Bio-based healable non-isocyanate polyurethanes driven by the cooperation of disulfide and hydrogen bonds. Polym. Chem., 2020, 11(47), 7524–7532.
Zhang, L.; Michel, F. C. Jr, Co, A. C. Nonisocyanate route to2,5-bis(hydroxymethyl)furan-based polyurethanes crosslinked by reversible Diels-Alder reactions. J. Polym. Sci. Part A Polym. Chem., 2019, 57(14), 1495–1499.
Karami, Z.; Zohuriaan-Mehr, M. J.; Rostami, A. Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart. J. CO2 Util., 2017, 18, 294–302.
grid.26090.3d, Department of Materials Science; Engineering, C. f. O. M. S.; Engineering Technologies, C. U., Clemson, SC, USA; grid.26090.3d, Department of Materials Science; Engineering, C. f. O. M. S.; Engineering Technologies, C. U., Clemson, SC, USA. Self-healing polymers. Nature Reviews Materials, 2020, 5(8), 562–583.
Zhang, B. W.; Yang, X. X.; Lin, X. Y.; Shang, H. Y.; Liu, Q. G.; Wang, H. H.; Liu, S. W.; Xu, X.; Dong, F. H. High-strength, self-healing, recyclable, and catalyst-free bio-based non-isocyanate polyurethane. ACS Sustain. Chem. Eng., 2023, 11(15), 6100–6113.
Liu, X. X.; Yang, X. X.; Wang, S. H.; Wang, S. B.; Wang, Z. P.; Liu, S. W.; Xu, X.; Liu, H.; Song, Z. Q. Fully bio-based polyhydroxyurethanes with a dynamic network from a terpene derivative and cyclic carbonate functional soybean oil. ACS Sustain. Chem. Eng., 2021, 9(11), 4175–4184.
Zhou, Y. M.; Dong, F. H.; Chen, X. Y.; Huang, X. J.; Guo, L. Z.; Liu, H.; Xu, X. A novel rosin-based non-isocyanate polyurethane with high-strength, self-healing, and recyclable properties for wood adhesives. Ind. Crops Prod., 2024, 211, 118203.
Zhang, K. Y.; Shuai, K. J.; Ni, Z. B.; Kaneko, T.; Dong, W. F.; Chen, M. Q.; Shi, D. J. Synthesis of non-isocyanate polyurethanes with high-performance and self-healing properties. J. Appl. Polym. Sci., 2024, 141(5), e54899.
Feng, Z. H.; Zhao, W.; Liang, Z. H.; Lv, Y. F.; Xiang, F. K.; Sun, D. Q.; Xiong, C. Y.; Duan, C.; Dai, L.; Ni, Y. H. A new kind of nonconventional luminogen based on aliphatic polyhydroxyurethane and its potential application in ink-free anticounterfeiting printing. ACS Appl. Mater. Interfaces, 2020, 12(9), 11005–11015.
Zhao, W.; Feng, Z. H.; Liang, Z. H.; Lv, Y. F.; Xiang, F. K.; Xiong, C. Y.; Duan, C.; Dai, L.; Ni, Y. H. Vitrimer-cellulose paper composites: A new class of strong, smart, green, and sustainable materials. ACS Appl. Mater. Interfaces, 2019, 11(39), 36090–36099.
Yin, X. S.; Liu, H. M.; Lin, R. J.; Liu, X. C.; Huang, Z. Y.; Du, J. H.; Gu, Y. X.; Lin, X. F.; Lin, W. J.; Yi, G. B. Synthesis and properties of semicrystalline non-isocyanate polyurethane with tunable triple shape memory properties. J. Appl. Polym. Sci., 2023, 140(14), e53705.
Schimpf, V.; Heck, B.; Reiter, G.; Mülhaupt, R. Triple-shape memory materials via thermoresponsive behavior of nanocrystalline non-isocyanate polyhydroxyureth-anes. Macromolecules, 2017, 50(9), 3598–3606.
Demir, B.; Walsh, T. R. A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter, 2016, 12(8), 2453–2464.
Purwanto, N. S.; Chen, Y. X.; Torkelson, J. M. Reprocessable, bio-based, self-blowing non-isocyanate polyurethane network foams from cashew nutshell liquid. ACS Appl. Polym. Mater., 2023, 5(8), 6651–6661.
Delpierre, S.; Willocq, B.; Manini, G.; Lemaur, V.; Goole, J.; Gerbaux, P.; Cornil, J.; Dubois, P.; Raquez, J. M. Simple approach for a self-healable and stiff polymer network from iminoboronate-based boroxine chemistry. Chem. Mater., 2019, 31(10), 3736–3744.
Zhang, T. H.; Xue, B. L.; Yan, Q.; Yuan, Y.; Tan, J. J.; Guan, Y.; Wen, J. L.; Li, X. P.; Zhao, W. New kinds of lignin/non-isocyanate polyurethane hybrid polymers: facile synthesis, smart properties and adhesive applications. Ind. Crops Prod., 2023, 199, 116706.
Gomez-Lopez, A.; Ayensa, N.; Grignard, B.; Irusta, L.; Calvo, I.; Müller, A. J.; Detrembleur, C.; Sardon, H. Enhanced and reusable poly(hydroxy urethane)-based low temperature hot-melt adhesives. ACS Polym. Au, 2022, 2(3), 194–207.
Zhang, P. L.; Zhang, B.; Pan, J. S.; Zhang, G. L.; Ma, C. F.; Zhang, G. Z. Ultrastrong and versatile nonisocyanate polyurethane adhesive under extreme conditions. Chem. Mater., 2023, 35(18), 7730–7740.
0
Views
319
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution