浏览全部资源
扫码关注微信
郑州大学材料科学与工程学院,郑州 450001
Published:20 December 2024,
Published Online:30 September 2024,
Received:08 July 2024,
Accepted:19 August 2024
移动端阅览
杨学伦, 岳瑞恒, 黄财洋, 徐慎刚, 刘应良, 曹少魁. 氧化石墨烯改性聚乙烯醇缩丁醛透明高分子薄膜研究. 高分子通报, 2024, 37(12), 1801–1813
Yang, X. L.; Yue, R. H.; Huang, C. Y.; Xu, S. G.; Liu, Y. L.; Cao, S. K. Study on graphene oxide modified polyvinylbutyral transparent polymer films. Polym. Bull. (in Chinese), 2024, 37(12), 1801–1813
杨学伦, 岳瑞恒, 黄财洋, 徐慎刚, 刘应良, 曹少魁. 氧化石墨烯改性聚乙烯醇缩丁醛透明高分子薄膜研究. 高分子通报, 2024, 37(12), 1801–1813 DOI: 10.14028/j.cnki.1003-3726.2024.24.201.
Yang, X. L.; Yue, R. H.; Huang, C. Y.; Xu, S. G.; Liu, Y. L.; Cao, S. K. Study on graphene oxide modified polyvinylbutyral transparent polymer films. Polym. Bull. (in Chinese), 2024, 37(12), 1801–1813 DOI: 10.14028/j.cnki.1003-3726.2024.24.201.
采用不同类别的离子表面活性剂对氧化石墨烯(GO)进行功能化修饰,并通过溶液共混法制备了一系列聚乙烯醇缩丁醛/功能氧化石墨烯(PVB/
f
-GO)复合材料。X射线衍射仪(XRD)、原子力显微镜(AFM)和透射电子显微镜(TEM)分析表明,表面活性剂的插入有效阻止了GO的聚集,改善了其在PVB中的分散性。力学性能和可见光区透光性能测试表明,当添加十六烷基磺酸钠改性的氧化石墨烯(
s-
GO)含量为0.02 wt%时,PVB/
s-
GO复合材料的拉伸强度相比于原始PVB提高了38.1%,同时保持着88%的可见光透过率;当添加十六烷基苯磺酸钠修饰的氧化石墨烯(
sd
-GO)含量为0.03 wt%时,PVB/
sd
-GO复合材料的拉伸强度相比于原始PVB提高了28.4%,紫外线屏蔽能力提高至65%以上。
Different ionic surfactants were applied in this work to modify graphene oxide (GO). Then
a series of functionalized-graphene-oxide@polyvinylbutyral (PVB/
f
-GO) composites were prepared
via
the solution blending method. The X-ray diffractometer (XRD)
atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses revealed that the surfactant insertion effectively prevented the aggregation of GO and improved its dispersibility in PVB. The mechanical and optical measurements showed that when 0.02 wt% sodium hexadecyl sulfonate modified graphene oxide (
s
-GO) was added
the tensile strength of PVB/
f
-GO composite material was 38.1% higher than that of pristine PVB
while the visible light transmittance was maintained at 88%. When the sodium hexadecylbenzene sulfonate modified graphene oxide (
sd
-GO) content was 0.03 wt%
the tensile strength of PVB/
sd
-GO composite materials was increased by 28.4% compared to that of pristine PVB
while the ultraviolet shielding ability was increased above 65%.
聚乙烯醇缩丁醛功能氧化石墨烯力学性能透明性
PolyvinylbutyralFunctional graphene oxideMechanical propertyTransparency
Martín, M.; Centelles, X.; Solé, A.; Barreneche, C.; Fernández, A. I.; Cabeza, L. F. Polymeric interlayer materials for laminated glass: a review. Constr. Build. Mater., 2020, 230, 116897.
Nikitakos, V.; Porfyris, A. D.; Beltsios, K.; Papaspyrides, C.; Bordignon, S.; Chierotti, M. R.; Nejrotti, S.; Bonomo, M.; Barolo, C.; Piovano, A.; Pfaendner, R.; Yecora, B.; Perez, A. An integrated characterization strategy on board for recycling of poly(vinyl butyral) (PVB) from laminated glass wastes. Polymers, 2023, 16(1), 10.
Yu, L. J.; Zhao, H. M.; Lin, Y. C.; Jing, M. Y.; Wang, S. W. Sound insulation enhancement of PVB/PVDF film by adding LiCl. Polymer, 2023, 288, 126479.
Cai, L.; Zhang, Y. Q.; Wei, X. R.; Shi, J.; Zhang, Y. N.; Zhang, Y. S.; Wang, X. Study on the effect of different sandwich materials on the impact resistance of laminated glass. Constr. Build. Mater., 2022, 360, 129603.
Elzière, P.; Fourton, P.; Demassieux, Q.; Chennevière, A.; Dalle-Ferrier, C.; Creton, C.; Ciccotti, M.; Barthel, E. Supramolecular structure for large strain dissipation and outstanding impact resistance in polyvinylbutyral. Macromolecules, 2019, 52(20), 7821–7830.
Lassoued, M.; Crispino, F.; Loranger, É. Making security glazing from modified TEMPO oxidized nanofibers and polyvinylbutyral. Cellulose, 2021, 28(5), 3017–3027.
张书玉, 郭建荣, 贺军辉, 任世学. 秸秆基高强度透明纤维素薄膜. 高分子学报, 2024, 37, 1–12.
Zhan, S. Q.; Bo, Y. Y.; Liu, H. Y.; Yuan, R.; Ding, W.; Zhang, Y.; Zhang, D.; Wang, S.; Zhang, M. High-strength polyurethane composite film reinforced by cellulose nanocrystals. ACS Appl. Polym. Mater., 2024, 6(3), 1763–1771.
Mu, Y. Q.; Liu, Y. P.; Yang, X. H.; Yao, Z. Y.; Zhen, Z. L.; Xue, J. Q.; Wei, Y.; Niu, K. M. Preparation and characterization of PVB/CsxWO3/SiO2 (aerogel) nanocomposites for laminated glass with high visible light transmission and excellent thermal insulation. J. Mater. Sci., 2024, 59(15), 6322–6333.
黄星, 任家飞, 李齐方, 周政. 聚合物基柔性透明电磁屏蔽复合材料研究进展. 复合材料学报, 2023, 40(6), 3153–3166.
闫文卿, 张则尧, 李彦. 碳纳米管透明导电薄膜的可控制备. 高等学校化学学报, 2022, 43(3), 1–11.
齐锴亮, 张帆, 庞占刚. 石墨烯/聚合物柔性透明导电薄膜的研究进展. 中国胶粘剂, 2022, 31(9), 48–54.
Zhang, W. J.; Song, G. J.; Zhu, J. J.; Wang, C. H.; Zheng, H.; Li, B. W.; Yu, Z. X.; Yang, X. P.; Ma, L. C. Double macromolecules reinforced and toughened GO/epoxy resin composites: the critical role of a rigid-flexible interface. Compos. Commun., 2022, 34, 101262.
Cao, C. F.; Yu, B.; Huang, J.; Feng, X. L.; Lv, L. Y.; Sun, F. N.; Tang, L. C.; Feng, J. B.; Song, P. G.; Wang, H. Biomimetic, mechanically strong supramolecular nanosystem enabling solvent resistance, reliable fire protection and ultralong fire warning. ACS Nano, 2022, 16(12), 20865–20876.
Hui He, Q. L.; Wang, S. Z.; Shen, Y.; Zhang, C.; Liang, X. T. Bis(2-hydroxyethyl) terephthalate from depolymerized waste polyester modified graphene as a novel functional crosslinker for electrical and thermal conductive polyurethane composites. Compos. Commun., 2022, 35, 101343.
张海虎, 呙润华, 刘喜杰. 改性氧化石墨烯的制备及应用研究进展. 化工新型材料, 2022, 50(12), 12–15.
Zhao, Y. L.; Wu, Z. X.; Guo, S. B.; Zhou, Z. R.; Miao, Z. C.; Xie, S. Y.; Huang, R. J.; Li, L. F. Hyperbranched graphene oxide structure-based epoxy nanocomposite with simultaneous enhanced mechanical properties, thermal conductivity, and superior electrical insulation. Compos. Sci. Technol., 2022, 217, 109082.
Sahu, M.; Raichur, A. M. Toughening of high performance tetrafunctional epoxy with poly(allyl amine) grafted graphene oxide. Compos. Part B Eng., 2019, 168, 15–24.
Kim, S. H.; Park, S. J.; Lee, S. Y.; Park, S. J. Amine functionalization on thermal and mechanical behaviors of graphite nanofibers-loaded epoxy composites. J. Mater. Sci. Technol., 2023, 151, 80–88.
Chen, W. H.; Liu, P. J.; Min, L. Z.; Zhou, Y. M.; Liu, Y.; Wang, Q.; Duan, W. F. Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film. Nanomicro Lett., 2018, 10(3), 39.
Kondo, S.; Nishimura, T.; Nishina, Y.; Sano, K. Countercation engineering of graphene-oxide nanosheets for imparting a thermoresponsive ability. ACS Appl. Mater. Interfaces, 2023, 15(31), 37837–37844.
Wang, Y. N.; Suo, J. Y.; Wang, H. Y.; Wang, D. Y.; Wei, L.; Zhu, H. Preparation and reinforcement performance of RGO-CNTs-SiO2 three-phase filler for rubber composites. Compos. Sci. Technol., 2022, 228, 109633.
Kassab, Z.; Abdellaoui, Y.; Idouhli, R.; Salim, M. H.; El Bachraoui, F.; Ablouh, E. H.; El Achaby, M. Dielectric, transparent, thermally stable and mechanically robust bionanocomposite films based on chitosan and modified cellulose nanocrystals. Polym. Compos., 2024, 45(10), 9224–9238.
Khanzada, B.; Akhtar, N.; ul haq, I.; Mirza, B.; Ullah, A. Polyphenol assisted nano-reinforced chitosan films with antioxidant and antimicrobial properties. Food Hydrocoll., 2024, 153, 110010.
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A. S.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano, 2018, 12(2), 2078.
Jiang, F.; Cui, X. L.; Song, N.; Shi, L. Y.; Ding, P. Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos. Commun., 2020, 20, 100350.
Chen, W. J.; Zhang, B. B.; Wang, S.; Xue, B.; Liu, S. W.; An, M. Z.; Yang, Z.; Xu, G. M. Effect of GO on the structure and properties of PEG/biochar phase change composites. Polymers, 2023, 15(4), 963.
Ardyani, T.; Mohamed, A.; Abu Bakar, S.; Sagisaka, M.; Hafiz Mamat, M.; Khairul Ahmad, M.; Ibrahim, S.; Abdul Khalil, H. P. S.; King, S. M.; Rogers, S. E.; Eastoe, J. A guide to designing graphene-philic surfactants. J. Colloid Interface Sci., 2022, 620, 346–355.
Liyanage, C. D.; Kumar, H.; Perera, I.; Abeykoon, P. G.; Chen, F. Y.; Joya, J. S.; Suib, S. L.; Adamson, D. H. Synthesis of graphene oxide: effect of sonication during oxidation. Carbon, 2024, 223, 119047.
Li, L.; van Rijn, P. Fabrication and characterization of organically modified layered double hydroxide/poly(lactic acid) nanocomposite by sonication-assisted solution compounding method. Mater. Des., 2023, 233, 112196.
Kim, H. S.; Lee, S. K.; Wang, M.; Kang, J. M.; Sun, Y.; Jung, J. W.; Kim, K.; Kim, S. M.; Nam, J. D.; Suhr, J. Experimental investigation on 3D graphene-CNT hybrid foams with different interactions. Nanomaterials, 2018, 8(9), 694.
Sánchez-Cepeda, A.; Cedeño, E.; Marín, E.; Pazos, M. C.; Ingrid, S. C.; Muñoz, E. J.; Vera-Graziano, R. Evaluation of the dispersion properties of graphene oxide/cetyltrimethylammonium bromide for application in nanocomposite materials. RSC Adv., 2024, 14(5), 3267–3279.
Yang, W. D.; Li, Y. R.; Lee, Y. C. Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide. Appl. Surf. Sci., 2016, 380, 249–256.
Shao, L. S.; Li, J. J.; Guang, Y.; Zhang, Y. L.; Zhang, H.; Che, X. Y.; Wang, Y. H. PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Mater. Des., 2016, 99, 235–242.
Wang, X.; Liu, X.; Yuan, H.; Liu, H.; Liu, C.; Li, T.; Yan, C.; Yan, X.; Shen, C.; Guo, Z. Non-covalently functionalized graphene strengthened poly(vinyl alcohol). Mater. Des., 2018, 139, 372–379.
He, W. H.; Lu, L. H. Revisiting the structure of graphene oxide for preparing new-style graphene-based ultraviolet absorbers. Adv. Funct. Mater., 2012, 22(12), 2542–2549.
Dimiev, A.; Kosynkin, D. V.; Alemany, L. B.; Chaguine, P.; Tour, J. M. Pristine graphite oxide. J. Am. Chem. Soc., 2012, 134(5), 2815–2822.
0
Views
3
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution