浏览全部资源
扫码关注微信
暨南大学药学院,广州 511443
Received:16 September 2024,
Accepted:2024-12-09,
Published Online:06 January 2025,
Published:20 March 2025
移动端阅览
陈庆鑫, 刘靖杨, 王亚松, 罗沛力, 黄郑炜. 生物来源蛋白纳米递药系统研究进展: 以白蛋白、丝素蛋白和玉米醇溶蛋白为例. 高分子通报, 2025, 38(3), 403–416.
Chen, Q. X.; Liu, J. Y.; Wang, Y. S.; Luo, P. L.; Huang, Z. W. Research progress on biogenic protein nano-drug delivery systems: taking albumin, silk fibroin and zein as examples. Polym. Bull. (in Chinese), 2025, 38(3), 403–416.
陈庆鑫, 刘靖杨, 王亚松, 罗沛力, 黄郑炜. 生物来源蛋白纳米递药系统研究进展: 以白蛋白、丝素蛋白和玉米醇溶蛋白为例. 高分子通报, 2025, 38(3), 403–416. DOI: 10.14028/j.cnki.1003-3726.2025.24.270.
Chen, Q. X.; Liu, J. Y.; Wang, Y. S.; Luo, P. L.; Huang, Z. W. Research progress on biogenic protein nano-drug delivery systems: taking albumin, silk fibroin and zein as examples. Polym. Bull. (in Chinese), 2025, 38(3), 403–416. DOI: 10.14028/j.cnki.1003-3726.2025.24.270.
传统给药剂型的药物生物利用度低,且难以实现缓释、定向给药,因此迫切需要开发新的剂型以满足临床需求。纳米递药系统具有可实现靶向给药的特点,引起了人们的广泛关注。其中蛋白质纳米递药系统可显著改善药物的水溶性和稳定性,降低药物的使用剂量以减轻副作用,生物相容性高并且在体内可降解,是一种具有潜在开发价值的生物有机材料。其中,白蛋白纳米粒、丝素蛋白纳米粒、玉米醇溶蛋白纳米粒3种不同生物来源的蛋白纳米粒是极具代表性的蛋白质纳米递药系统。本综述介绍了上述3种蛋白纳米粒的特点、制备方法和应用现状,并讨论了当前研究中存在的难题和可能的解决方案,为进一步开展基于蛋白质纳米粒的新药研发工作提供一定的参考。
Drugs in traditional dosage forms have low bioavailability and it is difficult to achieve sustained release and targeted administration. Therefore
it is imperative to develop new dosage forms that meet the clinical needs of patients. Nanocarrier drug delivery systems have the characteristics of achieving targeted drug delivery
which has attracted considerable interest within the scientific community. Among them
the protein nanoparticle delivery system can significantly enhance the water solubility and stability of the drug
reduce the dosage of the drug to alleviate side effects
and be biodegradable in the body with minimal irritation. Among these
albumin nanoparticles
silk fibroin nanoparticles
and zein nanoparticles
three protein nanoparticles derived from different biological sources
are highly representative protein nanoparticle drug delivery systems. This review introduced the characteristics
preparation methods and application status of the aforementioned three protein nanoparticles
and discussed the challenges and possible solutions in the current research
providing a reference for further research and development of new drugs based on protein nanoparticles.
Kianfar, E . Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles . J. Nanobiotechnology , 2021 , 19 ( 1 ), 159 .
Matsumura, Y. ; Maeda, H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs . Cancer Res. , 1986 , 46 ( 12 Pt 1 ), 6387 – 6392 .
Vaezi-Kakhki, A. ; Asoodeh, A . Comparison of different methods for synthesis of iron oxide nanoparticles and investigation of their cellular properties, and antioxidant potential . Int. J. Pharm. , 2023 , 645 , 123417 .
Dattani, S. ; Li, X. L. ; Lampa, C. ; Lechuga-Ballesteros, D. ; Barriscale, A. ; Damadzadeh, B. ; Jasti, B. R . A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery . Int. J. Pharm. , 2023 , 631 , 122464 .
Yang, C. ; Yang, S. S. ; Fang, S. M. ; Li, L. S. ; Jing, J. C. ; Liu, W. T. ; Wang, C. ; Li, R. X. ; Lu, Y . PLGA nanoparticles enhanced cardio-protection of scutellarin and paeoniflorin against isoproterenol-induced myocardial ischemia in rats . Int. J. Pharm. , 2023 , 648 , 123567 .
Targhazeh, N. ; Maleki, M. ; Alemi, F. ; Yousefi, B . Enhanced drug loading capacity of graphene oxide nanoparticles by polyglycerol hyper branching and increasing the sensitivity of osteosarcoma cancer cells to doxorubicin . J. Drug Deliv. Sci. Technol. , 2023 , 88 , 104871 .
Asil, S. M. ; Ahlawat, J. ; Barroso, G. G. ; Narayan, M . Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases . Biomater. Sci. , 2020 , 8 ( 15 ), 4109 – 4128 .
Hong, S. ; Choi, D. W. ; Kim, H. N. ; Park, C. G. ; Lee, W. ; Park, H. H . Protein-based nanoparticles as drug delivery systems . Pharmaceutics , 2020 , 12 ( 7 ), 604 .
Wang, B. ; Shen, J. Q. ; Wang, X. G. ; Hou, R. X . Biomimetic nanoparticles for effective Celastrol delivery to targeted treatment of rheumatoid arthritis through the ROS-NF-κB inflammasome axis . Int. Immunopharmacol. , 2024 , 131 , 111822 .
Liu, H. ; Zhang, Y. ; Zhang, J. B. ; Xiong, Y. ; Peng, S. F. ; McClements, D. J. ; Zou, L. Q. ; Liang, R. H. ; Liu, W . Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: norbixin . Food Hydrocoll. , 2022 , 124 , 107329 .
Woo, M. R. ; Bak, Y. W. ; Cheon, S. ; Kim, J. S. ; Ji, S. H. ; Park, S. ; Woo, S. ; Kim, J. O. ; Jin, S. G. ; Choi, H. G . Modification of microenvironmental pH of nanoparticles for enhanced solubility and oral bioavailability of poorly water-soluble celecoxib . Int. J. Pharm. , 2024 , 659 , 124179 .
Ali Qamar, O. ; Jamil, F. ; Hussain, M. ; Bae, S. ; Inayat, A. ; Shah, N. S. ; Waris, A. ; Akhter, P. ; Kwon, E. E. ; Park, Y. K . Advances in synthesis of TiO 2 nanoparticles and their application to biodiesel production: a review . Chem. Eng. J. , 2023 , 460 , 141734 .
Pham, D. T. ; Tiyaboonchai, W . Fibroin nanoparticles: a promising drug delivery system . Drug Deliv. , 2020 , 27 ( 1 ), 431 – 448 .
Zhao, Z. ; Li, Y. ; Xie, M. B . Silk fibroin-based nanoparticles for drug delivery . Int. J. Mol. Sci. , 2015 , 16 ( 3 ), 4880 – 4903 .
Lashin, I. ; Fouda, A. ; Gobouri, A. A. ; Azab, E. ; Mohammedsaleh, Z. M. ; Makharita, R. R . Antimicrobial and in vitro cytotoxic efficacy of biogenic silver nanoparticles (Ag-NPs) fabricated by callus extract of Solanum incanum L . Biomolecules , 2021 , 11 ( 3 ), 341 .
Morad, M. Y. ; El-Sayed, H. ; Elhenawy, A. A. ; Korany, S. M. ; Aloufi, A. S. ; Ibrahim, A. M . Myco-synthesized molluscicidal and larvicidal selenium nanoparticles: a new strategy to control Biomphalaria alexandrina snails and larvae of Schistosoma mansoni with an in silico study on induced oxidative stress . J. Fungi , 2022 , 8 ( 3 ), 262 .
Lamichhane, S. ; Lee, S . Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy . Arch. Pharm. Res. , 2020 , 43 ( 1 ), 118 – 133 .
Hornok, V . Serum albumin nanoparticles: problems and prospects . Polymers , 2021 , 13 ( 21 ), 3759 .
Shen, X. ; Liu, X. Y. ; Li, T. T. ; Chen, Y. ; Chen, Y. ; Wang, P. ; Zheng, L. ; Yang, H. ; Wu, C. H. ; Deng, S. Q. ; Liu, Y. Y . Recent advancements in serum albumin-based nanovehicles toward potential cancer diagnosis and therapy . Front. Chem. , 2021 , 9 , 746646 .
Tanjung, Y. P. ; Dewi, M. K. ; Gatera, V. A. ; Barliana, M. I. ; Joni, I. M. ; Chaerunisaa, A. Y . Factors affecting the synthesis of bovine serum albumin nanoparticles using the desolvation method . Nanotechnol. Sci. Appl. , 2024 , 17 , 21 – 40 .
Solanki, R. ; Patel, K. ; Patel, S . Bovine serum albumin nanoparticles for the efficient delivery of berberine: preparation, characterization and in vitro biological studies . Colloids Surf. A Physicochem. Eng. Aspects , 2021 , 608 , 125501 .
Srivastava, A. ; Prajapati, A . Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications . Asian Biomed. , 2020 , 14 ( 6 ), 217 – 242 .
Alfagih, I. M. ; Kaneko, K. ; Kunda, N. K. ; Alanazi, F. ; Dennison, S. R. ; Tawfeek, H. M. ; Saleem, I. Y . In vitro characterization of inhalable cationic hybrid nanoparticles as potential vaccine carriers . Pharmaceuticals , 2021 , 14 ( 2 ), 164 .
Stein, N. C. ; Mulac, D. ; Fabian, J. ; Herrmann, F. C. ; Langer, K . Nanoparticle albumin-bound mTHPC for photodynamic therapy: preparation and comprehensive characterization of a promising drug delivery system . Int. J. Pharm. , 2020 , 582 , 119347 .
Desai, N. ; Trieu, V. ; Yao, Z. ; Louie, L. ; Ci, S. ; Yang, A. ; Tao, C. ; De, T. ; Beals, B. ; Dykes, D. ; Noker, P. ; Yao, R. ; Labao, E. ; Hawkins, M. ; Soon-Shiong, P . Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel . Clin. Cancer Res. , 2006 , 12 ( 4 ), 1317 – 1324 .
Meredith, L. ; Chao, T. ; Nevler, A. ; Basu Mallick, A. ; Singla, R. K. ; McCue, P. A. ; Bowne, W. B. ; Jiang, W . A rare metastatic mesenteric malignant PEComa with TSC2 mutation treated with palliative surgical resection and nab-sirolimus: a case report . Diagn. Pathol. , 2023 , 18 ( 1 ), 45 .
Adick, A. ; Hoheisel, W. ; Schneid, S. ; Mulac, D. ; Azhdari, S. ; Langer, K . Challenges of nanoparticle albumin bound (nab™) technology: Comparative study of abraxane® with a newly developed albumin-stabilized itraconazole nanosuspension . Eur. J. Pharm. Biopharm. , 2023 , 193 , 129 – 143 .
Li, B. X. ; Chen, X. J. ; Ding, T. J. ; Liu, Y. H. ; Ma, T. T. ; Zhang, G. L. ; Wang, X. M . Potentially overestimated efficacy of nanoparticle albumin-bound paclitaxel compared with solvent-based paclitaxel in breast cancer: a systemic review and meta-analysis . J. Cancer , 2021 , 12 ( 17 ), 5164 – 5172 .
Miroshnichenko, S. ; Pykhtina, M. ; Kotliarova, A. ; Chepurnov, A. ; Beklemishev, A . Engineering a new IFN-ApoA-I fusion protein with low toxicity and prolonged action . Molecules , 2023 , 28 ( 24 ), 8014 .
Türkeş, E. ; Sağ Açıkel, Y . Folic acid-conjugated cancer drug curcumin-loaded albumin nanoparticles: in-vestigation of curcumin release kinetics . J. Drug Deliv. Sci. Technol. , 2024 , 91 , 105178 .
Mohammadhassan, Z. ; Mohammadkhani, R. ; Moham-madi, A. ; Zaboli, K. A. ; Kaboli, S. ; Rahimi, H. ; Nosrati, H. ; Danafar, H . Preparation of copper oxide nanop-articles coated with bovine serum albumin for delivery of methotrexate . J. Drug Deliv. Sci. Technol. , 2022 , 67 , 103015 .
Rejinold N, S. ; Choi, G. ; Piao, H. ; Choy, J. H . Bovine serum albumin-coated niclosamide-zein nanoparticles as potential injectable medicine against COVID-19 . Materials , 2021 , 14 ( 14 ), 3792 .
Tarhini, M. ; Pizzoccaro, A. ; Benlyamani, I. ; Rebaud, C. ; Greige-Gerges, H. ; Fessi, H. ; Elaissari, A. ; Bentaher, A . Human serum albumin nanoparticles as nanovector carriers for proteins: application to the antibacterial proteins “neutrophil elastase” and “secretory leukocyte protease inhibitor” . Int. J. Pharm. , 2020 , 579 , 119150 .
El-Wakil, E. S. ; Khodear, G. A. M. ; Ahmed, H. E. S. ; Ibrahim, G. I. K. ; Hegab, F. ; Abdo, S. M . Therapeutic efficacy of albendazole and berberine loaded on bovine serum albumin nanoparticles on intestinal and muscular phases of experimental trichinellosis . Acta Trop. , 2023 , 241 , 106896 .
Mickaela Martinez, S. ; Inda, A. ; Marina Garcia, A. ; María Bermúdez, J. ; Emilio Gonzo, E. ; Herrero-Vanrell, R. ; Domingo Luna, J. ; Alberto Allemandi, D. ; Alejandra Quinteros, D . Development of melatonin-loaded, human-serum-albumin nanoparticles formulations using different methods of preparation for ophthalmic administration . Int. J. Pharm. , 2022 , 628 , 122308 .
Kunde, S. S. ; Wairkar, S . Targeted delivery of albumin nanoparticles for breast cancer: a review . Colloids Surf. B Biointerfaces , 2022 , 213 , 112422 .
Zhang, W. W. ; Wang, Y. ; He, J. Z. ; Xu, Y. G. ; Chen, R. ; Wan, X. Y. ; Shi, W. J. ; Huang, X. F. ; Xu, L. ; Wang, J. ; Zha, X. M . Efficacy comparisons of solvent-based paclitaxel, liposomal paclitaxel, nanoparticle albumin-bound paclitaxel, and docetaxel after neoadjuvant systemic treatment in breast cancer . Nanomed. Nanotechnol. Biol. Med. , 2023 , 54 , 102707 .
Gawde, K. A. ; Sau, S. ; Tatiparti, K. ; Kashaw, S. K. ; Mehrmohammadi, M. ; Azmi, A. S. ; Iyer, A. K . Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers . Colloids Surf. B Biointerfaces , 2018 , 167 , 8 – 19 .
Xu, X. H. ; Hu, J. Y. ; Xue, H. Q. ; Hu, Y. Y. ; Liu, Y. N. ; Lin, G. Y. ; Liu, L. L. ; Xu, R. N . Applications of human and bovine serum albumins in biomedical engineering: a review . Int. J. Biol. Macromol. , 2023 , 253 , 126914 .
Chen, S. S. ; Han, Y. Q. ; Ouyang, Q. C. ; Lu, J. G. ; Zhang, Q. Y. ; Yang, S. E. ; Wang, J. F. ; Huang, H. X. ; Liu, H. ; Shao, Z. M. ; Li, H. ; Chen, Z. D. ; Sun, S. Y. ; Geng, C. Z. ; Lu, J. G. ; Sun, J. W. ; Wang, J. Y. ; Xu, B. H . Randomized and dose-escalation trials of recombinant human serum albumin/granulocyte colony-stimulating factor in patients with breast cancer receiving anthracycline-containing chemotherapy . BMC Cancer , 2021 , 21 ( 1 ), 341 .
Shen, Y. ; Wang, X. Y. ; Li, B. B. ; Guo, Y. J. ; Dong, K . Development of silk fibroin-sodium alginate scaffold loaded silk fibroin nanoparticles for hemostasis and cell adhesion . Int. J. Biol. Macromol. , 2022 , 211 , 514 – 523 .
Luetchford, K. A. ; Chaudhuri, J. B. ; De Bank, P. A . Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering . Mater. Sci. Eng. C , 2020 , 106 , 110116 .
Lyu, H. ; Li, J. H. ; Yuan, Z. C. ; Liu, H. R. ; Sun, Z. Y. ; Jiang, R. ; Yu, X. ; Hu, Y. ; Pei, Y. ; Ding, J. ; Shen, Y. ; Guo, C. C . Supertough and highly stretchable silk protein-based films with controlled biodegradability . Acta Biomater. , 2022 , 153 , 149 – 158 .
Liu, S. ; Gao, X. T. ; Wang, Y. Q. ; Wang, J. ; Qi, X. J. ; Dong, K. H. ; Shi, D. Y. ; Wu, X. C. ; Guo, C. L . Baicalein-loaded silk fibroin peptide nanofibers protect against cisplatin-induced acute kidney injury: fabrication, characterization and mechanism . Int. J. Pharm. , 2022 , 626 , 122161 .
Yang, W. J. ; Xie, D. C. ; Liang, Y. Q. ; Chen, N. X. ; Xiao, B. ; Duan, L. ; Wang, M . Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol . J. Drug Deliv. Sci. Technol. , 2022 , 68 , 103025 .
Diez-Echave, P. ; Ruiz-Malagón, A. J. ; Molina-Tijeras, J. A. ; Hidalgo-García, L. ; Vezza, T. ; Cenis-Cifuentes, L. ; Rodríguez-Sojo, M. J. ; Cenis, J. L. ; Rodríguez-Cabezas, M. E. ; Rodríguez-Nogales, A. ; Gálvez, J. ; Lozano-Pérez, A. A . Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis . Int. J. Pharm. , 2021 , 606 , 120935 .
Lohcharoenkal, W. ; Wang, L. Y. ; Chen, Y. C. ; Rojanasakul, Y . Protein nanoparticles as drug delivery carriers for cancer therapy . BioMed Res. Int. , 2014 , 2014 ( 1 ), 180549 .
Moin, A. ; Wani, S. U. D. ; Osmani, R. A. ; Abu Lila, A. S. ; Khafagy, E. S. ; Arab, H. H. ; Gangadharappa, H. V. ; Allam, A. N . Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer . Drug Deliv. , 2021 , 28 ( 1 ), 1626 – 1636 .
Tran, P. ; Park, J. S . Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs . Int. J. Pharm. , 2021 , 610 , 121247 .
Zhao, Z. ; Li, Y. ; Chen, A. Z. ; Zheng, Z. J. ; Hu, J. Y. ; Li, J. S. ; Li, G . Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO 2 . Ind. Eng. Chem. Res. , 2013 , 52 ( 10 ), 3752 – 3761 .
Jain, A. ; Singh, S. K. ; Arya, S. K. ; Kundu, S. C. ; Kapoor, S . Protein nanoparticles: promising platforms for drug delivery applications . ACS Biomater. Sci. Eng. , 2018 , 4 ( 12 ), 3939 – 3961 .
Lammel, A. S. ; Hu, X. ; Park, S. H. ; Kaplan, D. L. ; Scheibel, T. R . Controlling silk fibroin particle features for drug delivery . Biomaterials , 2010 , 31 ( 16 ), 4583 – 4591 .
Khan, R. S. ; Rather, A. H. ; Wani, T. U. ; Rather, S. U. ; Abdal-hay, A. ; Sheikh, F. A . A comparative review on silk fibroin nanofibers encasing the silver nanoparticles as antimicrobial agents for wound healing applications . Mater. Today Commun. , 2022 , 32 , 103914 .
Hasannasab, M. ; Nourmohammadi, J. ; Dehghan, M. M. ; Ghaee, A . Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing . Int. J. Pharm. , 2021 , 610 , 121227 .
Bao, L. H. ; Hong, F. F. ; Li, G. L. ; Hu, G. Q. ; Chen, L . Improved performance of bacterial nanocellulose conduits by the introduction of silk fibroin nanoparticles and heparin for small-caliber vascular graft applications . Biomacromolecules , 2021 , 22 ( 2 ), 353 – 364 .
Tang, Y. ; Zhang, L. F. ; Sun, R. ; Luo, B. Y. ; Zhou, Y. ; Zhang, Y. ; Liang, Y. Q. ; Xiao, B. ; Wang, C. H . Pulmonary delivery of mucus-traversing PF127-modified silk fibroin nanoparticles loading with quercetin for lung cancer therapy . Asian J. Pharm. Sci. , 2023 , 18 ( 4 ), 100833 .
Numata, K. ; Yamazaki, S. ; Naga, N . Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles . Biomacromolecules , 2012 , 13 ( 5 ), 1383 – 1389 .
Gou, S. Q. ; Huang, Y. M. ; Wan, Y. ; Ma, Y. ; Zhou, X. ; Tong, X. L. ; Huang, J. ; Kang, Y. J. ; Pan, G. Q. ; Dai, F. Y. ; Xiao, B . Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis . Biomaterials , 2019 , 212 , 39 – 54 .
Wu, P. Y. ; Liu, Q. ; Li, R. T. ; Wang, J. ; Zhen, X. ; Yue, G. F. ; Wang, H. Y. ; Cui, F. B. ; Wu, F. L. ; Yang, M. ; Qian, X. P. ; Yu, L. X. ; Jiang, X. Q. ; Liu, B. R . Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery . ACS Appl. Mater. Interfaces , 2013 , 5 ( 23 ), 12638 – 12645 .
Yu, Q. W. ; Meng, Z. Y. ; Liu, Y. C. ; Li, Z. H. ; Sun, X. ; Zhao, Z . Photocuring hyaluronic acid/silk fibroin hydrogel containing curcumin loaded CHITOSAN nanoparticles for the treatment of MG-63 cells and ME3T3-E1 cells . Polymers , 2021 , 13 ( 14 ), 2302 .
Salehi, S. ; Koeck, K. ; Scheibel, T . Spider silk for tissue engineering applications . Molecules , 2020 , 25 ( 3 ), 737 .
Hofer, M. ; Winter, G. ; Myschik, J . Recombinant spider silk particles for controlled delivery of protein drugs . Biomaterials , 2012 , 33 ( 5 ), 1554 – 1562 .
Ye, W. B. ; Zhang, G. L. ; Liu, X. M. ; Ren, Q. D. ; Huang, F. Q. ; Yan, Y. F . Fabrication of polysaccharide-stabilized zein nanoparticles by flash nanoprecipitation for doxorubicin sustained release . J. Drug Deliv. Sci. Technol. , 2022 , 70 , 103183 .
Wang, Y. ; Padua, G. W . Nanoscale characterization of zein self-assembly . Langmuir , 2012 , 28 ( 5 ), 2429 – 2435 .
Lei, Y. L. ; Lee, Y . Nanoencapsulation and delivery of bioactive ingredients using zein nanocarriers: app-roaches, characterization, applications, and perspectives . Food Sci. Biotechnol. , 2024 , 33 ( 5 ), 1037 – 1057 .
Kakran, M. ; Sahoo, N. G. ; Li, L. ; Judeh, Z . Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution . Powder Technol. , 2012 , 223 , 59 – 64 .
Joye, I. J. ; McClements, D. J . Production of nanoparticles by anti-solvent precipitation for use in food systems . Trends Food Sci. Technol. , 2013 , 34 ( 2 ), 109 – 123 .
Yuan, Y. K. ; Li, H. ; Liu, C. Z. ; Zhu, J. X. ; Xu, Y. ; Zhang, S. Z. ; Fan, M. H. ; Zhang, D. D. ; Zhang, Y. N. ; Zhang, Z. J. ; Wang, D. F . Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method . Int. J. Biol. Macromol. , 2019 , 139 , 30 – 39 .
Yan, X. J. ; Li, M. T. ; Xu, X. F. ; Liu, X. B. ; Liu, F. G . Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: a review . Front. Nutr. , 2022 , 9 , 999373 .
Zheng, H. M. ; Wang, J. L. ; You, F. ; Zhou, M. Y. ; Shi, S. W . Fabrication, characterization, and antimicrobial activity of carvacrol-loaded zein nanoparticles using the pH-driven method . Int. J. Mol. Sci. , 2022 , 23 ( 16 ), 9227 .
Yuan, Y. K. ; Xiao, J. Z. ; Zhang, P. Y. ; Ma, M. J. ; Wang, D. F. ; Xu, Y . Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin . Food Chem. , 2021 , 364 , 130401 .
Drosou, C. G. ; Krokida, M. K. ; Biliaderis, C. G . Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications . Dry. Technol. , 2017 , 35 ( 2 ), 139 – 162 .
Yang, J. ; Xie, J. H. ; Paximada, E . Electrosprayed zein and quercetin particles: formation and properties . Food Bioprocess Technol. , 2024 , Doi: 10.1007/s11947-024-03633-4 https://doi.org/10.1007/s11947-024-03633-4 .
de Souza Tavares, W. ; Barreto, G. A. V. ; Pinto, E. P. ; de Barros Silva, P. G. ; de Sousa, F. F. O . Influence of gelatin on the functional characteristics and wound healing potential of chitosan/zein films loaded with ellagic acid nanoparticles . J. Drug Deliv. Sci. Technol. , 2023 , 88 , 104942 .
Elsherbini, A. M. ; Shalaby, T. I. ; Abdelmonsif, D. A. ; Rashed, S. A. ; Haroun, M. ; Sabra, S. A . Tadalafil-loaded zein nanoparticles incorporated into pectin/PVA nanofibers as a diabetic wound dressing with enhanced angiogenic and healing properties . J. Drug Deliv. Sci. Technol. , 2023 , 89 , 105019 .
Xu, H. L. ; Jiang, Q. R. ; Reddy, N. ; Yang, Y. Q . Hollow nanoparticles from zein for potential medical applications . J. Mater. Chem. , 2011 , 21 ( 45 ), 18227 – 18235 .
Liu, Q. G. ; Jing, Y. Q. ; Han, C. P. ; Zhang, H. ; Tian, Y. M . Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties . Food Hydrocoll. , 2019 , 93 , 432 – 442 .
Dong, F. Y. ; Dong, X. L. ; Zhou, L. P. ; Xiao, H. H. ; Ho, P. Y. ; Wong, M. S. ; Wang, Y . Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: preparation, in vitro evaluation, and cellular uptake . Colloids Surf. B Biointerfaces , 2016 , 140 , 324 – 331 .
Shinde, P. ; Agraval, H. ; Srivastav, A. K. ; Yadav, U. C. S. ; Kumar, U . Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking . Int. J. Pharm. , 2020 , 588 , 119795 .
Wang, D. D. ; Tao, S. N. ; Yin, S. W. ; Sun, Y. J. ; Li, Y. X . Facile preparation of zein nanoparticles with tunable surface hydrophobicity and excellent colloidal stability . Colloids Surf. A Physicochem. Eng. Aspects , 2020 , 591 , 124554 .
Tapia-Hernández, J. A. ; Rodríguez-Felix, F. ; Juárez-Onofre, J. E. ; Ruiz-Cruz, S. ; Robles-García, M. A. ; Borboa-Flores, J. ; Wong-Corral, F. J. ; Cinco-Moroyoqui, F. J. ; Castro-Enríquez, D. D. ; Del-Toro-Sánchez, C. L . Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: a strategy for prevention of chronic degenerative diseases . Food Res. Int. , 2018 , 111 , 451 – 471 .
Li, M. ; Yu, M. H . Development of a nanoparticle delivery system based on zein/polysaccharide com-plexes . J. Food Sci. , 2020 , 85 ( 12 ), 4108 – 4117 .
0
Views
149
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution