Feng, J. Y.; Huang, W. W.; Zhan, Q. Y.; Yan, Y. F.; Wu, C. F. Flash nanoprecipitation fabrication of chitosan/sodium tripolyphosphate nanoparticles for siRNA delivery. Polym. Bull. (in Chinese), 2025, 38(3), 460–471.
Feng, J. Y.; Huang, W. W.; Zhan, Q. Y.; Yan, Y. F.; Wu, C. F. Flash nanoprecipitation fabrication of chitosan/sodium tripolyphosphate nanoparticles for siRNA delivery. Polym. Bull. (in Chinese), 2025, 38(3), 460–471. DOI: 10.14028/j.cnki.1003-3726.2025.24.304.
Flash Nanoprecipitation Fabrication of Chitosan/Sodium Tripolyphosphate Nanoparticles for siRNA Delivery
RNA干扰在癌症和其他多种疾病的治疗中具有广阔的应用前景,亟需发展高效、安全的递送手段来实现RNA干扰技术的临床应用。本研究使用瞬时纳米沉淀技术,制备系列稳定的、基于壳聚糖(CS)和三聚磷酸钠(TPP)的纳米粒子,系统研究了CS浓度、分子量及其与TPP的质量比对CS/TPP纳米粒子的物理化学性质的影响,并初步评价了纳米粒子的基因沉默效率。结果显示,CS浓度为0.3~0.6 g/L和CS/TPP质比为1/1~4/1时,可以形成较为稳定的复合物。其中,CS浓度为0.5 g/L,质量比为2/1时可得到直径为70~100 nm的稳定纳米粒子。稳定的CS/TPP纳米粒子对siRNA的负载效率为75%~90%,细胞毒性低。在2.5 ng siRNA/μL浓度下,负载siRNA的CS/TPP纳米粒子可以引起约30%的目的基因的沉默。相关结果对制备稳定的、小尺寸CS纳米粒子及其 siRNA递送研究具有一定的借鉴意义。
Abstract
RNA interference (RNAi) holds great potential in the treatment of cancer and various diseases. It is urgent to develop efficient and safe delivery carriers to achieve the clinical application of RNAi-based therapeutics. In this study
Flash nanoprecipitation (FNP) technology was utilized to prepare stable nanoparticles (NPs) based on CS and sodium tripolyphosphate (TPP). The effects of chitosan (CS) concentration
molecular weight
and the mass ratio of CS to TPP on the physicochemical properties of CS/TPP NPs were extensively investigated. Subsequently
suitable NPs were selected for
in vitro
siRNA delivery to HeLa cells. The results showed that stable complex NPs could be formed when the concentration of CS was 0.3-0.6 g/L and the mass ratio of CS to TPP was 1/1-4/1. Among them
stable CS NPs with a diameter of 70-100 nm were obtained at a CS concentration of 0.5 g/L and a CS/TPP mass ratio of 2/1. The selected CS/TPP NPs demonstrated a siRNA loading efficiency of 75%-90% with low cytotoxicity. siRNA-loaded CS NPs induced approximately 30% silencing of the target gene at a siRNA dose of 2.5 ng/μL
indicating a certain level of siRNA delivery efficiency. These results provide valuable insights for preparing stable and small CS NPs for siRNA delivery.
关键词
Keywords
references
Naldini, L . Gene therapy returns to centre stage . Nature , 2015 , 526 ( 7573 ), 351 – 360 .
Hu, B. ; Weng, Y. H. ; Xia, X. H. ; Liang, X. J. ; Huang, Y. Y . Clinical advances of siRNA therapeutics . J. Gene Med. , 2019 , 21 ( 7 ), e3097 .
Kelleher, A. D. ; Cortez-Jugo, C. ; Cavalieri, F. ; Qu, Y. J. ; Glanville, A. R. ; Caruso, F. ; Symonds, G. ; Ahlenstiel, C. L . RNAi therapeutics: an antiviral strategy for human infections . Curr. Opin. Pharmacol. , 2020 , 54 , 121 – 129 .
Yahya, E. B. ; Alqadhi, A. M . Recent trends in cancer therapy: a review on the current state of gene delivery . Life Sci. , 2021 , 269 , 119087 .
Tatiparti, K. ; Sau, S. ; Kashaw, S. K. ; Iyer, A. K . siRNA delivery strategies: a comprehensive review of recent developments . Nanomaterials , 2017 , 7 ( 4 ), 77 .
Ramasamy, T. ; Munusamy, S. ; Ruttala, H. B. ; Kim, J. O . Smart nanocarriers for the delivery of nucleic acid-based therapeutics: a comprehensive review . Biotechnol. J. , 2021 , 16 ( 2 ), e1900408 .
Hattori, Y. ; Nakamura, M. ; Takeuchi, N. ; Tamaki, K. ; Shimizu, S. ; Yoshiike, Y. ; Taguchi, M. ; Ohno, H. ; Ozaki, K. I. ; Onishi, H . Effect of cationic lipid in cationic liposomes on siRNA delivery into the lung by intravenous injection of cationic lipoplex . J. Drug Target. , 2019 , 27 ( 2 ), 217 – 227 .
Wang, H. ; Miao, W. J. ; Wang, F. ; Cheng, Y. Y . A self-assembled coumarin-anchored dendrimer for efficient gene delivery and light-responsive drug delivery . Bioma-cromolecules , 2018 , 19 ( 6 ), 2194 – 2201 .
Ahwazi, R. P. ; Kiani, M. ; Dinarvand, M. ; Assali, A. ; Tekie, F. S. M. ; Dinarvand, R. ; Atyabi, F . Immobilization of HIV-1 TAT peptide on gold nanoparticles: a feasible approach for siRNA delivery . J. Cell. Physiol. , 2020 , 235 ( 3 ), 2049 – 2059 .
Pinese, C. ; Lin, J. Q. ; Milbreta, U. ; Li, M. Q. ; Wang, Y. C. ; Leong, K. W. ; Chew, S. Y . Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing . Acta Biomater. , 2018 , 76 , 164 – 177 .
Zu, H. ; Gao, D. C . Non-viral vectors in gene therapy: recent development, challenges, and prospects . AAPS J. , 2021 , 23 ( 4 ), 78 .
Calvo, P. ; Remuñán-López, C. ; Vila-Jato, J. L. ; Alonso, M. J . Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers . J. Appl. Polym. Sci. , 1997 , 63 ( 1 ), 125 – 132 .
Csaba, N. ; Köping-Höggård, M. ; Alonso, M. J . Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery . Int. J. Pharm. , 2009 , 382 ( 1-2 ), 205 – 214 .
de Britto, D. ; de Moura, M. R. ; Aouada, F. A. ; Mattoso, L. H. C. ; Assis, O. B. G . N , N , N -trimethyl chitosan nanoparticles as a vitamin carrier system . Food Hydrocoll. , 2012 , 27 ( 2 ), 487 – 493 .
Gan, Q. ; Wang, T . Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release . Colloids Surf. B Biointerfaces , 2007 , 59 ( 1 ), 24 – 34 .
Sinha, V. R. ; Singla, A. K. ; Wadhawan, S. ; Kaushik, R. ; Kumria, R. ; Bansal, K. ; Dhawan, S . Chitosan microspheres as a potential carrier for drugs . Int. J. Pharm. , 2004 , 274 ( 1-2 ), 1 – 33 .
Wu, J. ; Wang, Y. P. ; Yang, H. ; Liu, X. Y. ; Lu, Z . Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles . Carbohydr. Polym. , 2017 , 175 , 170 – 177 .
Wu, Y. ; Yang, W. L. ; Wang, C. C. ; Hu, J. H. ; Fu, S. K . Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate . Int. J. Pharm. , 2005 , 295 ( 1-2 ), 235 – 245 .
Liu, Y. ; Hui, Y. ; Ran, R. ; Yang, G. Z. ; Wibowo, D. ; Wang, H. F. ; Middelberg, A. P. J. ; Zhao, C. X . Synergetic combinations of dual-targeting ligands fo r enhanced in vitro and in vivo tumor targeting . Adv. Healthc. Mater. , 2018 , 7 ( 15 ), 1800106 .
Johnson, B. K. ; Prud’homme, R. K . Chemical processing and micromixing in confined impinging jets . AlChE. J. , 2003 , 49 ( 9 ), 2264 – 2282 .
Li, M. ; Xu, Y. S. ; Sun, J. L. ; Wang, M. W. ; Yang, D. H. ; Guo, X. H. ; Song, H. Y. ; Cao, S. ; Yan, Y. F . Fabrication of charge-conversion nanoparticles for cancer imaging by flash nanoprecipitation . ACS Appl. Mater. Interfaces , 2018 , 10 ( 13 ), 10752 – 10760 .
Shen, H. ; Hong, S. ; Prud’homme, R. K. ; Liu, Y . Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles . J. Nanopart. Res. , 2011 , 13 ( 9 ), 4109 – 4120 .
Ding, S. K. ; Anton, N. ; Vandamme, T. F. ; Serra, C. A . Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview . Expert Opin. Drug Deliv. , 2016 , 13 ( 10 ), 1447 – 1460 .
Preparation of Maleoyl Chitosan Nanoparticles by Self-Assembly and their pH Responsability
Preparation and Characterization of Quantum Dots-tagged Self-assembly Nanoparticles
Confined Dynamics and Rheology of Polymer Nanocomposites
Synthesis and Analysis of Thermosensitive Hydrogels from Chitosan/k-Carrageenan Oligosaccharides
Related Author
Xue JIANG
Xiao-qing WANG
Huai-jun CHEN
Ji-dong HE
Yong YANG
Xiao-qing DONG
Lei ZHANG
Jin CHANG
Related Institution
Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics , Qingdao University of Science & Technology
Institute of Nanobiotechnology,School of materials Science & Engineering,Tianjin University
Advanced Rheology Institute, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
College of Life and Health, Dalian University
College of Life Sciences, Dalian Nationalities University