浏览全部资源
扫码关注微信
1.辽宁石油化工大学石油化工学院,抚顺 113001
2.杭州师范大学材料与化学化工学院,有机硅化学及材料技术教育部重点实验室,浙江省有机硅材料技术重点实验室,杭州 311121
Received:21 March 2025,
Accepted:03 April 2025,
Published Online:11 June 2025,
Published:20 August 2025
移动端阅览
陈蕤, 常晓华, 韩媛媛, 赵桂艳, 朱雨田. 水凝胶基柔性应变传感材料设计及研究进展. 高分子通报, 2025, 38(8), 1193–1208.
Chen, R.; Chang, X. H.; Han, Y. Y.; Zhao, G. Y.; Zhu, Y. T. Progress in hydrogel-based flexible strain sensing materials. Polym. Bull. (in Chinese), 2025, 38(8), 1193–1208.
陈蕤, 常晓华, 韩媛媛, 赵桂艳, 朱雨田. 水凝胶基柔性应变传感材料设计及研究进展. 高分子通报, 2025, 38(8), 1193–1208. DOI: 10.14028/j.cnki.1003-3726.2025.25.064.
Chen, R.; Chang, X. H.; Han, Y. Y.; Zhao, G. Y.; Zhu, Y. T. Progress in hydrogel-based flexible strain sensing materials. Polym. Bull. (in Chinese), 2025, 38(8), 1193–1208. DOI: 10.14028/j.cnki.1003-3726.2025.25.064.
水凝胶基柔性应变传感器具备高柔韧性和高灵敏度,具有宽线性响应范围,以及优异的生物相容性和加工性能,引起科研人员的广泛关注。鉴于这些优点,水凝胶基柔性应变传感器在可穿戴电子设备和人机交互等领域有着广泛的应用前景。然而,如何在环境稳定性和生物相容性之间达成平衡依旧是当前研究中的重大挑战。本综述首先简要介绍了基于不同基体的柔性应变传感材料,重点探讨了其近期的重要研究进展,并且详细论述了其传感机理、优缺点以及优化策略。随后,针对水凝胶基柔性应变传感材料,系统地探讨了影响其灵敏度、检测范围、自愈合能力、黏附力、生物相容性等性能的因素。最后,对水凝胶基柔性应变传感材料当前面临的挑战进行了总结,对未来发展趋势进行了展望。
Flexible hydrogel-based strain sensors possess various advantages such as high flexibility
high sensitivity
wide linear response range
and excellent biocompatibility and processing performance
which have attracted significant attention from researchers. These advantages enable them to have great potential for applications in fields such as wearable electronic devices and human-computer interactions. This review briefly introduces different types of strain sensors and then focuses on their recent advances
as well as their sensing mechanisms
advantages and disadvantages
and optimization strategies. Subsequently
the factors influencing the performance of hydrogel-based flexible strain sensing materials
including sensitivity
detection range
self-healing ability
adhesion
and biocompatibility
were systematically discussed. Finally
this review discusses the current challenges and future development trends of hydrogel-based flexible strain sensing materials.
Chen, J. W. ; Zhu, Y. T. ; Chang, X. H. ; Pan, D. ; Song, G. ; Guo, Z. H. ; Naik, N . Recent progress in essential functions of soft electronic skin . Adv. Funct. Mater. , 2021 , 31 ( 42 ), 2104686 .
Huang, Y. ; Fan, X. Y. ; Chen, S. C. ; Zhao, N . Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing . Adv. Funct. Mater. , 2019 , 29 ( 12 ), 1808509 .
Liu, E. Z. ; Cai, Z. M. ; Ye, Y. W. ; Zhou, M. Y. ; Liao, H. ; Yi, Y . An overview of flexible sensors: Development, application, and challenges . Sensors , 2023 , 23 ( 2 ), 817 .
Nan, X. L. ; Wang, X. ; Kang, T. T. ; Zhang, J. L. ; Dong, L. X. ; Dong, J. F. ; Xia, P. ; Wei, D. L . Review of flexible wearable sensor devices for biomedical application . Micromachines , 2022 , 13 ( 9 ), 1395 .
李岚霆 , 陈建闻 , 赵桂艳 , 韩媛媛 , 朱雨田 . 高分子基柔性电容式压力传感材料的研究进展 . 高分子通报 , 2023 , ( 10 ), 1290 – 1301 .
Dominguez-Nicolas, S. M. ; Juarez-Aguirre, R. ; Garcia-Ramirez, P. J. ; Herrera-May, A. L . Signal conditioning system with a 4–20 mA output for a resonant magnetic field sensor based on MEMS technology . IEEE Sens. J. , 2012 , 12 ( 5 ), 935 – 942 .
Ismail, S. N. A. ; Nayan, N. A. ; Mohammad Haniff, M. A. S. ; Jaafar, R. ; May, Z . Wearable two-dimensional nanomaterial-based flexible sensors for blood pressure monitoring: A review . Nanomaterials , 2023 , 13 ( 5 ), 852 .
Li, T. ; Li, Y. ; Zhang, T . Materials, structures, and functions for flexible and stretchable biomimetic sensors . Acc. Chem. Res. , 2019 , 52 ( 2 ), 288 – 296 .
陈茹 , 赵广泰 , 宋静辉 , 张鑫 , 曹新苗 . 基于碳纳米管的柔性传感器的制备与应用研究进展 . 高分子通报 , 2024 , 37 ( 10 ), 1388 – 1399 .
Yan, J. C. ; Chen, A. P. ; Liu, S. Y . Flexible sensing platform based on polymer materials for health and exercise monitoring . Alex. Eng. J. , 2024 , 86 , 405 – 414 .
Wang, J. Y. ; Hou, Z. H. ; Wang, W. X. ; Bai, L. J. ; Chen, H. ; Yang, L. X. ; Yin, K. ; Yang, H. W. ; Wei, D. L . Design of self-healing nanocomposite hydrogels and the application to the detection of human exercise and ascorbic acid in sweat . Biosens. Bioelectron. , 2025 , 267 , 116767 .
Tang, L. ; Wu, S. J. ; Qu, J. ; Gong, L. ; Tang, J. X . A review of conductive hydrogel used in flexible strain sensor . Materials , 2020 , 13 ( 18 ), 3947 .
Xiang, R. Y . Classification and application of composite conductive polymer materials . Appl. Comput. Eng. , 2023 , 7 ( 1 ), 66 – 69 .
Wei, L. P. ; Wang, L. ; Cui, Z. W. ; Liu, Y. J. ; Du, A. H . Multifunctional applications of ionic liquids in polymer materials: A brief review . Molecules , 2023 , 28 ( 9 ), 3836 .
Chen, Z. Y. ; Yan, T. ; Pan, Z. J . Review of flexible strain sensors based on cellulose composites for multi-faceted applications . Cellulose , 2021 , 28 ( 2 ), 615 – 645 .
Jian, M. Q. ; Wang, C. Y. ; Wang, Q. ; Wang, H. M. ; Xia, K. L. ; Yin, Z. ; Zhang, M. C. ; Liang, X. P. ; Zhang, Y. Y . Advanced carbon materials for flexible and wearable sensors . Sci. China Mater. , 2017 , 60 ( 11 ), 1026 – 1062 .
Zou, X. Y. ; Xue, R. ; An, Z. W. ; Li, H. W. ; Zhang, J. L. ; Jiang, Y. ; Huang, L. J. ; Wu, W. ; Wang, S. F. ; Hu, G. H. ; Li, R. K. Y. ; Zhao, H . Recent advances in flexible CNC-based chiral nematic film materials . Small , 2024 , 20 ( 5 ), 2303778 .
Xiao, Z. B. ; Li, Q. F. ; Liu, H. Q. ; Zhao, Q. X. ; Niu, Y. W. ; Zhao, D . Adhesion mechanism and application progress of hydrogels . Eur. Polym. J. , 2022 , 173 , 111277 .
Yang, Y. Y. ; Xu, L. F. ; Wang, J. F. ; Meng, Q. Y. ; Zhong, S. L. ; Gao, Y. ; Cui, X. J . Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications . Carbohydr. Polym. , 2022 , 283 , 119161 .
李华 , 朱雨田 , 赵桂艳 . 导电高分子基柔性应变传感材料研究进展 . 辽宁石油化工大学学报 , 2022 , 42 ( 2 ), 44 – 49 .
Wang, J. ; Xiong, Z. H. ; Wu, L. J. ; Chen, J. W. ; Zhu, Y. T . Highly sensitive and wide-range iontronic pressure sensors with a wheat awn-like hierarchical structure . J. Colloid Interface Sci. , 2024 , 669 , 190 – 197 .
Liu, Y. F. ; Wang, J. ; Chen, J. W. ; Yuan, Q. ; Zhu, Y. T . Ultrasensitive iontronic pressure sensor based on rose-structured ionogel dielectric layer and compressively porous electrodes . Adv. Compos. Hybrid Mater. , 2023 , 6 ( 6 ), 210 .
Li, H. ; Zhang, J. J. ; Chen, J. ; Luo, Z. B. ; Zhang, J. Y. ; Alhandarish, Y. ; Liu, Q. H. ; Tang, W. ; Wang, L . A supersensitive, multidimensional flexible strain gauge sensor based on Ag/PDMS for human activities monitoring . Sci. Rep. , 2020 , 10 ( 1 ), 4639 .
Wang, X. G. ; Song, C. J. ; Wang, Y. Y. ; Feng, S. X. ; Xu, D. ; Hao, T. T. ; Xu, H. B . Flexible transparent films of oriented silver nanowires for a stretchable strain sensor . Materials , 2024 , 17 ( 16 ), 4059 .
Liu, Y. ; Xu, Z. J. ; Ji, X. Y. ; Xu, X. ; Chen, F. ; Pan, X. S. ; Fu, Z. Q. ; Chen, Y. Z. ; Zhang, Z. J. ; Liu, H. B. ; Cheng, B. W. ; Liang, J. J . Ag-thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution . Nat. Commun. , 2024 , 15 ( 1 ), 5354 .
Zhu, X. X. ; Zhou, Y. M. ; Ye, C . Preparation and performance of AgNWs/PDMS film-based flexible strain sensor . Materials , 2023 , 16 ( 2 ), 641 .
Zhang, Z. Z. ; Ma, X. T. ; Wang, W. Q. ; Gong, X. Y. ; Zhao, Y. ; Mu, Q. Y. ; Xue, Z. X. ; Liu, X. G. ; Zheng, H. ; Xu, W. L . Recent advances in gel materials with special wettability: A review . J. Mater. Sci. , 2022 , 57 ( 28 ), 13179 – 13201 .
Sajjadi, S. ; Gholizadeh-Hashjin, A. ; Shafizadeh, F. ; Marefat, S. ; Hamidi, S. ; Farjami, A . Advancing biomedicine with gel-based materials and composites: a comprehensive review . J. Appl. Polym. Sci. , 2023 , 140 ( 45 ), e54641 .
Ni, Y. M. ; Zang, X. R. ; Chen, J. J. ; Zhu, T. X. ; Yang, Y. ; Huang, J. Y. ; Cai, W. L. ; Lai, Y. K . Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent underwater communication and sensing rescue . Adv. Funct. Mater. , 2023 , 33 ( 49 ), 2301127 .
Ma, Z. ; Shi, W. ; Yan, K. ; Pan, L. J. ; Yu, G. H . Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies . Chem. Sci. , 2019 , 10 ( 25 ), 6232 – 6244 .
Kuzina, M. A. ; Kartsev, D. D. ; Stratonovich, A. V. ; Levkin, P. A . Organogels versus hydrogels: advantages, challenges, and applications . Adv. Funct. Mater. , 2023 , 33 ( 27 ), 2301421 .
Zou, J. ; Jing, X. ; Chen, Z. ; Wang, S. J. ; Hu, X. S. ; Feng, P. Y. ; Liu, Y. J . Multifunctional organohydrogel with ultralow-hysteresis, ultrafast-response, and whole-strain-range linearity for self-powered sensors . Adv. Funct. Mater. , 2023 , 33 ( 15 ), 2213895 .
Tang, F. ; Ji, C. H. ; Wu, S. L. ; Yang, Y. Q. ; Huang, F. L. ; Wei, Q. F . Optimizing poly(vinyl alcohol) organogel sensor performance at ultralow temperatures via synergistic modulation of forces and crystallization . ACS Appl. Polym. Mater. , 2024 , 6 ( 18 ), 11350 – 11359 .
Zheng, X. W. ; Zhou, X. F. ; Yang, Y. L. ; Xiong, W. J. ; Ye, S. L. ; Xu, Y. T. ; Zeng, B. R. ; Yuan, C. H. ; Dai, L. Z . Anchoring solvent molecules onto polymer chains through dynamic interactions for a wide temperature range adaptable and ultra-fast responsive adhesive organogels . Adv. Funct. Mater. , 2024 , 34 ( 48 ), 2408351 .
Wu, Z. X. ; Yang, X. ; Wu, J . Conductive hydrogel- and organohydrogel-based stretchable sensors . ACS Appl. Mater. Interfaces , 2021 , 13 ( 2 ), 2128 – 2144 .
Feng, Y. F. ; Yu, J. ; Sun, D. ; Ren, W. F. ; Shao, C. Y. ; Sun, R. C . Solvent-induced in situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors . Chem. Eng. J. , 2022 , 433 , 133202 .
Sun, H. L. ; Han, Y. P. ; Huang, M. J. ; Li, J. W. ; Bian, Z. Y. ; Wang, Y. L. ; Liu, H. ; Liu, C. T. ; Shen, C. Y . Highly stretchable, environmentally stable, self-healing and adhesive conductive nanocomposite organohydrogel for efficient multimodal sensing . Chem. Eng. J. , 2024 , 480 , 148305 .
Khan, A. ; Kisannagar, R. R. ; Mahmood, S. ; Chuang, W. T. ; Katiyar, M. ; Gupta, D. ; Lin, H. C . Intrinsically stretchable conductive self-healable organogels for strain, pressure, temperature, and humidity sensing . ACS Appl. Mater. Interfaces , 2023 , 15 ( 36 ), 42954 – 42964 .
Liu, S. ; Tian, X. Y. ; Zhang, X. S. ; Xu, C. Z. ; Wang, L. L. ; Xia, Y. Z . A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors . Chin. Chem. Lett. , 2022 , 33 ( 4 ), 2205 – 2211 .
Cui, X. H. ; Xi, Y. B. ; Tu, S. W. ; Zhu, Y. T . An overview of flexible sensors from ionic liquid-based gels . Trac Trends Anal. Chem. , 2024 , 174 , 117662 .
Sun, Y. Q. ; Huang, J. R. ; Cheng, Y. ; Zhang, J. ; Shi, Y. ; Pan, L. J . High-accuracy dynamic gesture recognition: a universal and self-adaptive deep-learning-assisted system leveraging high-performance ionogels-based strain sensors . SmartMat , 2024 , 5 ( 6 ), e1269 .
Lu, Y. ; Yue, Y. Y. ; Ding, Q. Q. ; Mei, C. T. ; Xu, X. W. ; Jiang, S. H. ; He, S. J. ; Wu, Q. L. ; Xiao, H. N. ; Han, J. Q . Environment-tolerant ionic hydrogel-elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical-thermal multimode sensor . InfoMat , 2023 , 5 ( 4 ), e12409 .
Si, W. J. ; Liang, Y. P. ; Chen, Y. K. ; Zhang, S. D . A multifunctional sustainable ionohydrogel with excellent low-hysteresis-driven mechanical performance, environ-mental tolerance, multimodal stimuli-responsiveness, and power generation ability for wearable electronics . J. Mater. Chem. A , 2022 , 10 ( 34 ), 17464 – 17476 .
Patel, V. ; Das, E. ; Bhargava, A. ; Deshmukh, S. ; Modi, A. ; Srivastava, R . Ionogels for flexible conductive substrates and their application in biosensing . Int. J. Biol. Macromol. , 2024 , 254 , 127736 .
Wang, H. ; Mao, Y. Y. ; Ji, D. ; Wang, L. ; Wang, L. ; Chen, J. W. ; Chang, X. H. ; Zhu, Y. T . Transparent, self-adhesive, highly environmental stable, and water-resistant ionogel enabled reliable strain/temperature sensors and underwater communicators . Chem. Eng. J. , 2023 , 471 , 144674 .
Gao, Y. Y. ; Guo, J. J. ; Chen, J. ; Yang, G. X. ; Shi, L. ; Lu, S. Y. ; Wu, H. ; Mao, H. ; Da, X. Y. ; Gao, G. X. ; Ding, S. J . Highly conductive organic-ionogels with excellent hydrophobicity and flame resistance . Chem. Eng. J. , 2022 , 427 , 131057 .
Xiang, S. F. ; He, X. J. ; Zheng, F. ; Lu, Q. H . Multifunctional flexible sensors based on ionogel composed entirely of ionic liquid with long alkyl chains for enhancing mechanical properties . Chem. Eng. J. , 2022 , 439 , 135644 .
Lai, J. L. ; Zhou, H. W. ; Jin, Z. Y. ; Li, S. L. ; Liu, H. B. ; Jin, X. L. ; Luo, C. Y. ; Ma, A. J. ; Chen, W. X . Highly stretchable, fatigue-resistant, electrically conductive, and temperature-tolerant ionogels for high-performance flexible sensors . ACS Appl. Mater. Interfaces , 2019 , 11 ( 29 ), 26412 – 26420 .
Xu, J. H. ; Wang, H. ; Du, X. S. ; Cheng, X. ; Du, Z. L. ; Wang, H. B . Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing . Chem. Eng. J. , 2021 , 426 , 130724 .
Cao, J. F. ; Li, J. H. ; Chen, Y. M. ; Zhang, L. N. ; Zhou, J. P . Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness . Adv. Funct. Mater. , 2018 , 28 ( 23 ), 1800739 .
Chen, L. R. ; Chang, X. H. ; Wang, H. ; Chen, J. W. ; Zhu, Y. T . Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity . Nano Energy , 2022 , 96 , 107077 .
Chen, L. R. ; Xu, Y. Q. ; Liu, Y. F. ; Wang, J. ; Chen, J. W. ; Chang, X. H. ; Zhu, Y. T . Flexible and transparent electronic skin sensor with sensing capabilities for pressure, temperature, and humidity . ACS Appl. Mater. Interfaces , 2023 , 15 ( 20 ), 24923 – 24932 .
Deng, W. J. ; Wei, F. C. ; Hu, J . Muscle contraction-inspired tough hydrogels . ACS Appl. Mater. Interfaces , 2023 , 15 ( 6 ), 8462 – 8470 .
侯萍 , 李铭 , 马军 , 陈冬梅 , 樊伟伟 . 天然高分子材料水凝胶的制备及其应用进展 . 高分子通报 , 2022 , ( 8 ), 29 – 36 .
Ma, C. ; Xie, F. W. ; Wei, L. J. ; Zheng, C. Y. ; Liu, X. Y. ; Wang, L. M. ; Liu, P . All-starch-based hydrogel for flexible electronics: Strain-sensitive batteries and self-powered sensors . ACS Sustainable Chem. Eng. , 2022 , 10 ( 20 ), 6724 – 6735 .
Zhou, Y. Z. ; Xie, Z. B. ; Wu, F. Q. ; Qin, J. L. ; Zhang, X. H. ; Zhang, J. ; Ma, X. S. ; Fan, L. R. ; Wang, X. ; Wang, J. J. ; Tan, T. F. ; Lu, C. H . Facile fabrication and characterization of double network starch/PVA/NaCl composite hydrogel for flexible strain sensor . React. Funct. Polym. , 2025 , 208 , 106163 .
Ding, H. Y. ; Wang, B. Y. ; Yang, X. ; Liu, J. ; Sang, W. ; Li, X. W. ; Wen, Y. F. ; Li, H. ; Shen, X. D . Conductive polyacrylamide/pullulan/ammonium sulfate hydrogels with high toughness, low-hysteresis and tissue-like modulus as flexible strain sensors . Int. J. Biol. Macromol. , 2025 , 291 , 139183 .
钱网秋 , 赵三笑 , 王金金 , 林娜 , 海春杰 , 王晓蓉 , 张洪吉 . 红光响应性PSDM-MTPP形状记忆水凝胶的制备与性能 . 辽宁石油化工大学学报 , 2019 , 39 ( 1 ), 25 – 30 .
Liu, C. W. ; Zhang, R. ; Wang, Y. ; Qu, J. Q. ; Huang, J. T. ; Mo, M. T. ; Qing, N. ; Tang, L. Y . Tough, anti-drying and thermoplastic hydrogels consisting of biofriendly resources for a wide linear range and fast response strain sensor . J. Mater. Chem. A , 2023 , 11 ( 4 ), 2002 – 2013 .
Ding, F. Y. ; Shi, X. W. ; Wu, S. ; Liu, X. H. ; Deng, H. B. ; Du, Y. M. ; Li, H. B . Flexible polysaccharide hydrogel with pH-regulated recovery of self-healing and mechanical properties . Macromol. Mater. Eng. , 2017 , 302 ( 11 ), 1700221 .
Sarmah, D. ; Karak, N . Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel . Carbohydr. Polym. , 2022 , 289 , 119428 .
Taylor, D. L. ; in het Panhuis, M . Self-healing hydrogels . Adv. Mater. , 2016 , 28 ( 41 ), 9060 – 9093 .
刘雪姣 , 李海强 . 强韧型自愈合水凝胶的研究进展 . 高分子通报 , 2020 , ( 4 ), 10 – 21 .
董鹏 , 许芳 , 崔崑 , 姜涛 . 自愈性聚合物水凝胶的最新研究进展 . 高分子通报 , 2017 , ( 1 ), 47 – 56 .
Zhang, J. ; Wang, Y. N. ; Wei, Q. H. ; Wang, Y. M. ; Lei, M. J. ; Li, M. Y. ; Li, D. H. ; Zhang, L. Y. ; Wu, Y . Self-healing mechanism and conductivity of the hydrogel flexible sensors: A review . Gels , 2021 , 7 ( 4 ), 216 .
Wang, M. ; Chen, H. ; Li, X. X. ; Wang, G. K. ; Peng, C. ; Wang, W. ; Zhang, F. ; Wang, J. Q. ; Liu, H. H. ; Yan, G. Q. ; Qin, H. L . An extremely transparent and multi-responsive healable hydrogel strain sensor . J. Mater. Chem. A , 2022 , 10 ( 45 ), 24096 – 24105 .
Zhou, Y. H. ; Fei, X. ; Tian, J. ; Xu, L. Q. ; Li, Y . Biomass-based hydrogels with high ductility, self-adhesion and conductivity inspired by starch paste for strain sensing . Int. J. Biol. Macromol. , 2022 , 222 , 1211 – 1220 .
Wu, B. Y. ; Mai, Z. F. ; Ji, Z. C. ; Du, B. Y. ; Huang, S. Y . Self-compounded, tough biohydrogels for robust self-adhesive biointerfaces . Mater. Today Phys. , 2022 , 29 , 100905 .
Gao, Y. ; Jia, F. ; Gao, G. H . Transparent and conductive amino acid-tackified hydrogels as wearable strain sensors . Chem. Eng. J. , 2019 , 375 , 121915 .
Tang, S. X. ; Feng, K. R. ; Yang, R. ; Cheng, Y. ; Chen, M. Y. ; Zhang, H. ; Shi, N. Y. ; Wei, Z. ; Ren, H. ; Ma, Y. F . Multifunctional adhesive hydrogels: From design to biomedical applications . Adv. Healthc. Mater. , 2025 , 14 ( 2 ), 2403734 .
Yao, X. ; Zhang, S. F. ; Qian, L. W. ; Wei, N. ; Nica, V. ; Coseri, S. ; Han, F . Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors . Adv. Funct. Mater. , 2022 , 32 ( 33 ), 2204565 .
Wu, J. ; Wu, Z. X. ; Han, S. J. ; Yang, B. R. ; Gui, X. C. ; Tao, K. ; Liu, C. ; Miao, J. M. ; Norford, L. K . Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel . ACS Appl. Mater. Interfaces , 2019 , 11 ( 2 ), 2364 – 2373 .
Liu, Y. M. ; Wong, T. H. ; Huang, X. C. ; Yiu, C. K. ; Gao, Y. Y. ; Zhao, L. ; Zhou, J. K. ; Park, W. ; Zhao, Z. ; Yao, K. M. ; Li, H. ; Jia, H. L. ; Li, J. ; Li, J. Y. ; Huang, Y. ; Wu, M. G. ; Zhang, B. B. ; Li, D. F. ; Zhang, C. ; Wang, Z. K. ; Yu, X. G . Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing . Nano Energy , 2022 , 99 , 107442 .
Wei, Y. M. ; Wang, H. ; Ding, Q. L. ; Wu, Z. X. ; Zhang, H. ; Tao, K. ; Xie, X. ; Wu, J . Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO 2 sensors and the mechanism . Mater. Horiz. , 2022 , 9 ( 7 ), 1921 – 1934 .
Zeng, S. ; Zhang, J. Y. ; Zu, G. Q. ; Huang, J . Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics . Carbohydr. Polym. , 2021 , 267 , 118198 .
Ren, J. ; Li, M. ; Li, R. R. ; Wang, X. M. ; Li, Y. ; Yang, W . Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring . Colloids Surf. A Physicochem. Eng. Aspects , 2022 , 652 , 129795 .
Qiu, Y. ; Wang, Y. L. ; Tang, W. J. ; Wu, T. J. ; Huang, P. ; Yu, Q. ; Xu, L. ; Zhang, X. S . An ultra-thin transparent multi-functional sensor based on silk hydrogel for health monitoring . J. Micromech. Microeng. , 2022 , 32 ( 8 ), 084003 .
Liu, Y. P. ; Wang, L. L. ; Mi, Y. Y. ; Zhao, S. S. ; Qi, S. M. ; Sun, M. ; Peng, B. ; Xu, Q. ; Niu, Y. C. ; Zhou, Y . Transparent stretchable hydrogel sensors: Materials, design and applications . J. Mater. Chem. C , 2022 , 10 ( 37 ), 13351 – 13371 .
Wu, Z. X. ; Ding, Q. L. ; Li, Z. Y. ; Zhou, Z. J. ; Luo, L. Q. ; Tao, K. ; Xie, X. ; Wu, J . Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films . Sci. China Mater. , 2022 , 65 ( 9 ), 2540 – 2552 .
Wang, Z. ; Zhu, M. M. ; Li, J. Q. ; Hu, C. Y. ; Li, J. ; Xiong, R. H. ; Huang, C. B . Nanocellulose based hydrogel for flexible sensors: Current progress and future perspective . Nano Energy , 2024 , 129 , 109974 .
Gamboa, J. ; Paulo-Mirasol, S. ; Estrany, F. ; Torras, J . Recent progress in biomedical sensors based on conducting polymer hydrogels . ACS Appl. Bio Mater. , 2023 , 6 ( 5 ), 1720 – 1741 .
Fraser, S. A. ; Van Zyl, W. E . A wearable strain sensor based on electroconductive hydrogel composites for human motion detection . Macromol. Mater. Eng. , 2022 , 307 ( 7 ), 2100973 .
Wu, Y. H. ; Luo, Y. ; Cuthbert, T. J. ; Shokurov, A. V. ; Chu, P. K. ; Feng, S. P. ; Menon, C . Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators . Adv. Sci. , 2022 , 9 ( 11 ), 2106008 .
Karimzadeh, Z. ; Mahmoudpour, M. ; Rahimpour, E. ; Jouyban, A . Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes . Adv. Colloid Interface Sci. , 2022 , 305 , 102705 .
Miao, Y. N. ; Tang, Z. W. ; Zhang, Q. W. ; Reheman, A. ; Xiao, H. ; Zhang, M. ; Liu, K. ; Huang, L. L. ; Chen, L. H. ; Wu, H . Biocompatible lignin-containing hydrogels with self-adhesion, conductivity, UV shielding, and antioxidant activity as wearable sensors . ACS Appl. Polym. Mater. , 2022 , 4 ( 2 ), 1448 – 1456 .
Zhang, D. ; Tang, Y. J. ; Zhang, Y. X. ; Yang, F. Y. ; Liu, Y. L. ; Wang, X. Y. ; Yang, J. T. ; Gong, X. ; Zheng, J . Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors . J. Mater. Chem. A , 2020 , 8 ( 39 ), 20474 – 20485 .
Dai, R. J. ; Gao, Y. Y. ; Sun, Y. B. ; Shi, K. ; Gao, G. H. ; Zhang, H. X . Ionic conductive amylopectin hydrogels for biocompatible and anti-freezing wearable sensors . Eur. Polym. J. , 2023 , 200 , 112496 .
Azadi, S. ; Peng, S. H. ; Moshizi, S. A. ; Asadnia, M. ; Xu, J. T. ; Park, I. ; Wang, C. H. ; Wu, S. Y . Biocompatible and highly stretchable PVA/AgNWs hydrogel strain sensors for human motion detection . Adv. Mater. Technol. , 2020 , 5 ( 11 ), 2000426 .
Zhou, Y. C. ; Dai, T. Y. ; Cheng, Y. Q. ; Deng, Q. C. ; Li, X. Y. ; Wu, H. ; Han, W. J. ; Jia, H. B . Biocompatible polysaccharide ionic hydrogel as ultra-stretchable and multifunctional wearable sensor . J. Mater. Sci. , 2022 , 57 ( 34 ), 16367 – 16382 .
Zhang, X. ; Zhang, X. H. ; Kong, X. L. ; Zhou, X. ; Gao, Y. Y. ; Wang, Y. J. ; Gao, G. H. ; Qu, W. R. ; Shi, K . Ionic conductive soluble starch hydrogels for biocompatible and anti-freezing wearable sensors . Eur. Polym. J. , 2024 , 210 , 112949 .
Wang, L. ; Luo, M. Q. ; Zhang, Z. H. ; Ji, D. ; Chang, X. H. ; Zhu, Y. T . Ultra-stretchable, robust, self-healable conductive hydrogels enabled by the synergistic effects of hydrogen bonds and ionic coordination bonds toward high-performance e-skins . Chem. Eng. J. , 2024 , 500 , 156800 .
Li, Z. ; Li, C. ; Sun, W. ; Bai, Y. ; Li, Z. ; Deng, Y. L . A controlled biodegradable triboelectric nanogenerator based on PEGDA/laponite hydrogels . ACS Appl. Mater. Interfaces , 2023 , 15 ( 10 ), 12787 – 12796 .
Huang, B. ; Zhu, L. ; Wei, S. C. ; Li, Y. ; Nie, Y. J. ; Zhao, W. P . Starch-based ion-conductive organo-hydrogels with self-healing, anti-freezing, and high mechanical properties toward strain sensors . Macromol. Rapid Commun. , 2023 , 44 ( 7 ), 2200890 .
毛佳乐 , 孔德强 , 张宇峰 , 高海南 , 李书宏 . 抗冻水凝胶的研究进展 . 高分子通报 , 2022 , ( 11 ), 1 – 14 .
Zong, Y. D. ; Chen, L. Z. ; Li, X. ; Ding, Q. J. ; Han, W. J. ; Lou, J . Highly robust and sensitive dual-network freeze-resistant organic hydrogel thermocells . Carbohydr. Polym. , 2023 , 314 , 120958 .
Gao, Y. Y. ; Gao, Y. ; Zhang, Z. X. ; Wang, Y. R. ; Ren, X. Y. ; Jia, F. ; Gao, G. H . Highly conductive hydrogel sensors driven by amylose with freezing and dehydration resistances . J. Mater. Chem. C , 2022 , 10 ( 35 ), 12873 – 12882 .
Lu, J. ; Gu, J. F. ; Hu, O. D. ; Fu, Y. H. ; Ye, D. Z. ; Zhang, X. ; Zheng, Y. ; Hou, L. X. ; Liu, H. Y. ; Jiang, X. C . Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices . J. Mater. Chem. A , 2021 , 9 ( 34 ), 18406 – 18420 .
Zheng, H. J. ; Huang, Q. Q. ; Lu, M. J. ; Fu, J. X. ; Liang, Z. ; Zhang, T. ; Wang, D. ; Li, C. P . Anti-freezing nanocomposite organohydrogels with high strength and toughness . Polymers , 2022 , 14 ( 18 ), 3721 .
Zhang, X. F. ; Ma, X. F. ; Hou, T. ; Guo, K. C. ; Yin, J. Y. ; Wang, Z. G. ; Shu, L. ; He, M. ; Yao, J. F . Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels . Angew. Chem. Int. Ed. , 2019 , 58 ( 22 ), 7366 – 7370 .
Tao, X. Y. ; Zhu, K. H. ; Chen, H. M. ; Ye, S. F. ; Cui, P. X. ; Dou, L. Y. ; Ma, J. ; Zhao, C. ; He, J. ; Feng, P. Z . Recyclable, anti-freezing and anti-drying silk fibroin-based hydrogels for ultrasensitive strain sensors and all-hydrogel-state super-capacitors . Mater. Today Chem. , 2023 , 32 , 101624 .
Yang, Q. ; Yang, W. J. ; Wang, Z. ; Chen, R. ; Li, M. Z. ; Qin, C. J. ; Gao, D. H. ; Chen, W . Strong and tough antifreezing hydrogel sensor via the synergy of coordination and hydrogen bonds . ACS Appl. Mater. Interfaces , 2023 , 15 ( 44 ), 51684 – 51693 .
Yue, D. Q. ; Chen, Y. J. ; Wu, Y. X. ; Chen, H. ; Bai, L. J. ; Wang, W. X. ; Yang, H. W. ; Yang, L. X. ; Wei, D. L . Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on zwitterionic proline and cellulose nanocrystals . Sustain. Mater. Technol. , 2023 , 37 , e00653 .
Huang, X. W. ; Zhang, L. D . Encapsulation of hydrogel sensors . Chem. Eng. J. , 2024 , 484 , 149631 .
Liu, P. D. ; Zhang, S. ; Wei, F. L. ; Lv, J. ; Xu, P . Synthesis and properties of elevated temperature hydrogels for enhanced oil recovery based on AM/AMPA/NVP copolymer and silica nanoparticles . J. Appl. Polym. Sci. , 2023 , 140 ( 43 ), e54583 .
Li, R. ; Lin, J. ; Fang, Y. ; Yu, C. ; Zhang, J. J. ; Xue, Y. M. ; Liu, Z. Y. ; Zhang, J. ; Tang, C. C. ; Huang, Y . Porous boron nitride nanofibers/PVA hydrogels with improved mechanical property and thermal stability . Ceram. Int. , 2018 , 44 ( 18 ), 22439 – 22444 .
Hu, X. X. ; Cheng, Y. ; Wei, Z. J. ; Zhang, R. ; Zhan, Y. H. ; Xia, H. S . Enhanced sensing and electromagnetic interference shielding performance of hydrogels by the incorporation of ionic liquids . ACS Appl. Electron. Mater. , 2024 , 6 ( 3 ), 1770 – 1780 .
0
Views
59
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution