浏览全部资源
扫码关注微信
中国石油天然气股份有限公司石油化工研究院,北京 102206
Received:07 March 2025,
Accepted:04 May 2025,
Published Online:09 July 2025,
Published:20 September 2025
移动端阅览
ZHANG Ying-jie, SHI Xing-bo, DONG Yue, HAN Ming-yang, QIN Ya-wei, CAI Yu-dong, HU Qing, CHEN Shang-tao. Research Progress of Olefin-based Self-healing Polymer Materials[J]. Polymer bulletin, 2025, 38(9): 1364-1373.
ZHANG Ying-jie, SHI Xing-bo, DONG Yue, HAN Ming-yang, QIN Ya-wei, CAI Yu-dong, HU Qing, CHEN Shang-tao. Research Progress of Olefin-based Self-healing Polymer Materials[J]. Polymer bulletin, 2025, 38(9): 1364-1373. DOI: 10.14028/j.cnki.1003-3726.2025.25.078.
烯烃基聚合物材料性能优异并且应用广泛,但是材料在服役过程中不可避免会出现微小裂缝等缺陷,缺陷的进一步扩展会导致材料性能衰减甚至报废,严重的可能引发安全事故。烯烃基自修复聚合物材料可以在损伤出现的早期完成微小裂缝的修复,避免缺陷扩张,对提高材料服役安全性、延长材料寿命、减少资源浪费、避免材料废弃后的环境污染等方面具有重要意义。本文综述了国内外烯烃基自修复聚合物材料的研究进展,以烯烃基聚合物材料自修复的不同机理为主线,将烯烃基自修复聚合物材料分成了化学法烯烃基自修复聚合物材料和物理法烯烃基自修复聚合物材料,其中化学法主要包括可逆硼氧键、Diels-Alder可逆反应、热解自由基、配位作用、氢键等动态可逆共价键或非共价键作用;物理法主要包括微相分离结构、范德华力、偶极相互作用、主客体相互作用、亲疏水性相互作用等非共价键作用。重点介绍了材料的制备方法、自修复机理和自修复性能。指出了现有技术的不足,对烯烃基自修复聚合物材料的发展进行了展望,提出未来的发展动向和研发重点。
Olefin-based materials have been widely used because of their excellent properties. However
inevitable tiny cracks during the service process may lead to degradation of properties
even safety issues. Olefin-based self-healing polymer materials can prevent the growth of tiny cracks in the early stage to overcome problems mentioned above. It is of great significance to improve usage safety
extend lifecycle
decrease resource waste and environmental pollution for olefin-based materials. This work introduces the research progress of olefin-based self-healing polymer materials. Taking the self-healing mechanisms as the main line
olefin-based self-healing polymer materials are divided into chemically olefin-based self-healing polymer materials and physically olefin-based self-healing polymer materials. Chemical methods are mainly based on dynamic reversible covalent bonds and partial non-covalent bonds
while physical methods typically refer to the action of non-covalent bonds. In this review
we introduce the preparation methods
self-healing mechanisms
and self-healing properties of the materials. Furhtermore
we also discuss the disadvantages of the existing technologies
and future development of self-healing polyolefin materials.
Zhou, H. ; Niu, H. T. ; Wang, H. X. ; Lin, T . Self-healing superwetting surfaces, their fabrications, and properties . Chem. Rev. , 2023 , 123 ( 2 ), 663 – 700 .
Zhou, Y. ; Li, L. ; Han, Z. B. ; Li, Q. ; He, J. L. ; Wang, Q . Self-healing polymers for electronics and energy devices . Chem. Rev. , 2023 , 123 ( 2 ), 558 – 612 .
Bonardd, S. ; Nandi, M. ; Hernández García, J. I. ; Maiti, B. ; Abramov, A. ; Díaz Díaz, D . Self-healing polymeric soft actuators . Chem. Rev. , 2023 , 123 ( 2 ), 736 – 810 .
Bertsch, P. ; Diba, M. N. ; Mooney, D. J. ; Leeuwenburgh, S. C. G . Self-healing injectable hydrogels for tissue regeneration . Chem. Rev. , 2023 , 123 ( 2 ), 834 – 873 .
Qi, M. ; Yang, R. Q. ; Wang, Z. ; Liu, Y. T. ; Zhang, Q. C. ; He, B. ; Li, K. W. ; Yang, Q. ; Wei, L. ; Pan, C. F. ; Chen, M. X . Bioinspired self-healing soft electronics . Adv. Funct. Mater. , 2023 , 33 ( 17 ), 2214479 .
Li, B. R. ; Cao, P. F. ; Saito, T. ; Sokolov, A. P . Intrinsically self-healing polymers: From mechanistic insight to current challenges . Chem. Rev. , 2023 , 123 ( 2 ), 701 – 735 .
Qi, X. ; Pan, C. L. ; Zhang, L. Q. ; Yue, D. M . Bio-based, self-healing, recyclable, reconfigurable multifunctional polymers with both one-way and two-way shape memory properties . ACS Appl. Mater. Interfaces , 2023 , 15 ( 2 ), 3497 – 3506 .
Chen, Y. ; Tang, Z. H. ; Zhang, X. H. ; Liu, Y. J. ; Wu, S. W. ; Guo, B. C . Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds . ACS Appl. Mater. Interfaces , 2018 , 10 ( 28 ), 24224 – 24231 .
Chen, Y. ; Tang, Z. H. ; Liu, Y. J. ; Wu, S. W. ; Guo, B. C . Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links . Macromolecules , 2019 , 52 ( 10 ), 3805 – 3812 .
Bai, J. ; Li, H. ; Shi, Z. X. ; Yin, J . An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol-ene and Diels-Alder click chemistry . Macromolecules , 2015 , 48 ( 11 ), 3539 – 3546 .
Wang, A. H. ; Niu, H. ; He, Z. K. ; Li, Y . Thermoreversible cross-linking of ethylene/propylene copolymer rubbers . Polym. Chem. , 2017 , 8 ( 31 ), 4494 – 4502 .
Schäfer, S. ; Kickelbick, G . Double reversible networks: Improvement of self-healing in hybrid materials via combination of Diels-Alder cross-linking and hydrogen bonds . Macromolecules , 2018 , 51 ( 15 ), 6099 – 6110 .
Wang, H. B. ; Yang, Y. ; Nishiura, M. ; Higaki, Y. ; Takahara, A. ; Hou, Z. M . Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes . J. Am. Chem. Soc. , 2019 , 141 ( 7 ), 3249 – 3257 .
Huang, L. ; Yang, Y. ; Shao, J. J. ; Xiong, G. ; Wang, H. B. ; Nishiura, M. ; Hou, Z. M . Synthesis of tough and fluorescent self-healing elastomers by scandium-catalyzed terpolymerization of pyrenylethenylstyrene, ethylene, and anisylpropylene . J. Am. Chem. Soc. , 2024 , 146 ( 4 ), 2718 – 2727 .
Yang, Y. ; Wang, H. B. ; Huang, L. ; Nishiura, M. ; Higaki, Y. ; Hou, Z. M . Terpolymerization of ethylene and two different methoxyaryl-substituted propylenes by scandium catalyst makes tough and fast self-healing elastomers . Angew. Chem. Int. Ed. , 2021 , 60 ( 50 ), 26192 – 26198 .
Zhang, H. R. ; Huang, L. ; Wu, X. ; Chi, M. J. ; Wang, H. B. ; Nishiura, M. ; Higaki, Y. ; Murahashi, T. ; Hou, Z. M . Synthesis of self-healing elastomers by scandium-catalyzed terpolymerization of ethylene, styrene, and dimethylaminophenyl-substituted propylene . Macromolecules , 2024 , 57 ( 15 ), 7219 – 7226 .
Wang, H. B. ; Yang, Y. ; Nishiura, M. ; Hong, Y. ; Nishiyama, Y. ; Higaki, Y. ; Hou, Z. M . Making polyisoprene self-healable through microstructure regulation by rare-earth catalysts . Angew. Chem. Int. Ed. , 2022 , 61 ( 42 ), e202210023 .
Zhang, C. X. ; Liu, Z. Y. ; Shi, Z. X. ; Yin, J. ; Tian, M . Versatile approach to building dynamic covalent polymer networks by stimulating the dormant groups . ACS Macro Lett. , 2018 , 7 ( 11 ), 1371 – 1375 .
Enke, M. ; Bose, R. K. ; Bode, S. ; Vitz, J. ; Schacher, F. H. ; Garcia, S. J. ; van der Zwaag, S. ; Hager, M. D. ; Schubert, U. S . A metal salt dependent self-healing response in supramolecular block copolymers . Macromolecules , 2016 , 49 ( 22 ), 8418 – 8429 .
Liu, J. H. ; Xiao, C. L. ; Tang, J. ; Liu, Y. D. ; Hua, J . Construction of a dual ionic network in natural rubber with high self-healing efficiency through anionic mechanism . Ind. Eng. Chem. Res. , 2020 , 59 ( 28 ), 12755 – 12765 .
Cheng, T. ; Li, L. ; Chen, Y. L. ; Yang, S. ; Yang, X. L. ; Liu, Z. T. ; Qu, J. ; Meng, C. F. ; Zhang, Y. Z. ; Lai, W. Y . Stretchable and self-healing interlocking all-in-one supercapacitors based on multiple cross-linked hydrogel electrolytes . Adv. Mater. Interfaces , 2022 , 9 ( 29 ), 2201137 .
Auepattana-Aumrung, K. ; Crespy, D . Self-healing and anticorrosion coatings based on responsive polymers with metal coordination bonds . Chem. Eng. J. , 2023 , 452 , 139055 .
Cuthbert, T. J. ; Jadischke, J. J. ; de Bruyn, J. R. ; Ragogna, P. J. ; Gillies, E. R . Self-healing polyphosphonium ionic networks . Macromolecules , 2017 , 50 ( 14 ), 5253 – 5260 .
Zou, C. ; Chen, C. L . Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins . Angew. Chem. Int. Ed. , 2020 , 59 ( 1 ), 395 – 402 .
Na, Y. N. ; Chen, C. L . Catechol-functionalized polyolefins . Angew. Chem. Int. Ed. , 2020 , 59 ( 20 ), 7953 – 7959 .
Qi, X. ; Zhang, J. C. ; Zhang, L. Q. ; Yue, D. M . Bio-based self-healing eucommia ulmoides ester elastomer with damping and oil resistance . J. Mater. Sci. , 2020 , 55 ( 11 ), 4940 – 4951 .
Gilmour, D. J. ; Tomkovic, T. ; Kuanr, N. ; Perry, M. R. ; Gildenast, H. ; Hatzikiriakos, S. G. ; Schafer, L. L . Catalytic amine functionalization and polymerization of cyclic alkenes creates adhesive and self-healing materials . ACS Appl. Polym. Mater. , 2021 , 3 ( 5 ), 2330 – 2335 .
Wan, Y. ; Li, X. C. ; Chen, J. ; Wang, Q. ; Liu, C. ; Liu, C. F. ; Lai, W. Y . Stretchable and self-healing elastomers with aggregation-induced emission based on hydrogen bonding cross-linked networks . Macromolecules , 2023 , 56 ( 9 ), 3345 – 3353 .
Chen, Y. L. ; Kushner, A. M. ; Williams, G. A. ; Guan, Z. B . Multiphase design of autonomic self-healing thermoplastic elastomers . Nat. Chem. , 2012 , 4 ( 6 ), 467 – 472 .
Gaikwad, S. ; Urban, M. W . Ring-and-lock interactions in self-healable styrenic copolymers . J. Am. Chem. Soc. , 2023 , 145 ( 17 ), 9693 – 9699 .
Wang, S. Y. ; Li, L. ; Liu, Q. H. ; Urban, M. W . Self-healable acrylic-based covalently adaptable networks . Macromolecules , 2022 , 55 ( 11 ), 4703 – 4709 .
Wang, S. Y. ; Urban, M. W . Self-healable fluorinated copolymers governed by dipolar interactions . Adv. Sci. , 2021 , 8 ( 17 ), 2101399 .
Li, R. L. ; Zhu, X. R. ; Yu, B. M. ; Jia, S. L. ; Li, Y. F. ; Li, H. ; Zheng, J. ; Iqbal, M. A. ; Zhao, Y. N. ; Li, X. F . Synthesis of self-healing syndiotactic polyolefins by rare-earth catalysts . ACS Catal. , 2024 , 14 ( 1 ), 308 – 317 .
Li, Q. ; Xu, Z. ; Du, X. F. ; Du, X. Y. ; Cheng, H. Y. ; Wu, G. ; Wang, C. F. ; Cui, Z. F. ; Chen, S . Microfluidic-directed hydrogel fabrics based on interfibrillar self-healing effects . Chem. Mater. , 2018 , 30 ( 24 ), 8822 – 8828 .
Fan, L. F. ; Huang, Y. N. ; Rong, M. Z. ; Zhang, M. Q. ; Chen, X. D . Imparting external stress-free two-way shape memory effect to commodity polyolefins by manipulation of their hierarchical structures . ACS Macro Lett. , 2019 , 8 ( 9 ), 1141 – 1146 .
Bai, R. R. ; Zhu, H. Z. ; Xie, D. Y. ; Zhu, Z. H. ; Zhong, Q. ; Chen, J. ; Zhao, H. ; Liu, D. Y . Microwave loss percolation effect and microwave self-healing function of FeNi p /PP nanocomposites . Compos. Sci. Technol. , 2019 , 182 , 107745 .
0
Views
17
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution