浏览全部资源
扫码关注微信
1.宁德师范学院,闽东畲医药福建省高校工程研究中心,宁德 352100
2.福州大学化学学院,福州 350100
Received:05 April 2025,
Accepted:23 May 2025,
Published Online:04 August 2025,
Published:20 September 2025
移动端阅览
ZHANG Niu-niu, OUYANG Yi-fan, SHEN Cheng-wan, CHEN Ya-juan, ZHOU Peng-qian, WANG Ji-wei. Research Progress on Tumor Microenvironment-responsive Poly(amino acid)-based Drug Carriers[J]. Polymer bulletin, 2025, 38(9): 1345-1363.
ZHANG Niu-niu, OUYANG Yi-fan, SHEN Cheng-wan, CHEN Ya-juan, ZHOU Peng-qian, WANG Ji-wei. Research Progress on Tumor Microenvironment-responsive Poly(amino acid)-based Drug Carriers[J]. Polymer bulletin, 2025, 38(9): 1345-1363. DOI: 10.14028/j.cnki.1003-3726.2025.25.102.
肿瘤微环境响应型药物载体在肿瘤治疗中具有独特的优势,聚氨基酸分子由于良好的生物相容性、生物降解性、特殊的生物活性以及易于修饰等特点,在响应型药物载体领域得到广泛的关注和应用。本文综述了基于pH值、活性氧(ROS)、谷胱甘肽(GSH)、温度和酶等内源性以及光等外源性的不同刺激响应型聚氨基酸纳米药物载体的设计、制备及其抗肿瘤应用研究。据此对肿瘤微环境响应型聚氨基酸药物载体的未来研究方向进行了展望,以期为聚氨基酸类化合物作为药物载体的研究提供一定思路和借鉴。
Tumor microenvironment-responsive drug carriers exhibit unique advantages in cancer therapy. Amino acid molecules have garnered extensive attention and application in the field of responsive drug carriers due to their excellent biocompatibility
biodegradability
distinctive bioactivity
and ease of modification. This review summarizes the design
preparation
and antitumor applications of various stimulus-responsive poly(amino acid)-based nanodrug carriers
including endogenous stimuli (such as pH
reactive oxygen species
glutathione
temperature
and enzymes) and exogenous stimuli (for example light). Based on this
future research directions for tumor microenvironment-responsive poly(amino acid) drug carriers are discussed
aiming to provide insights and references for the development of poly(amino acid)-based drug delivery systems.
Liu, L. ; Tu, B. ; Sun, Y. ; Liao, L. L. ; Lu, X. L. ; Liu, E. G. ; Huang, Y. Z . Nanobody-based drug delivery systems for cancer therapy . J. Control. Release , 2025 , 381 , 113562 .
Pei, Z. R. ; Hu, S. Y. ; Wei, H. M. ; Ding, L. Q. ; Liu, J. B. ; Li, F. Y. ; Chen, H. Y . Multifunctional carrier-free nanodrugs for enhanced delivery and efficacy of hydrophobic antitumor drugs . Chin. Chem. Lett. , 2025 , doi: 10.1016/j.cclet.2025.110981 https://doi.org/10.1016/j.cclet.2025.110981 .
Li, H. Z. ; Chen, X. ; Rao, S. R. ; Zhou, M. Y. ; Lu, J. H. ; Liang, D. N. ; Zhu, B. Z. ; Meng, L. T. ; Lin, J. ; Ding, X. Y. ; Zhang, Q. F. ; Hu, D. H . Recent development of micro-nano carriers for oral antineoplastic drug delivery . Mater. Today Bio , 2025 , 30 , 101445 .
George Joy, J. ; Sharma, G. ; Kim, J. C . Tailoring polymeric nanocarriers for hypoxia-specific drug release: Insights into design and applications in clinics . Chem. Eng. J. , 2024 , 496 , 153978 .
Qin, Y. ; Liu, N. ; Wang, F. H. ; Gao, Z. P. ; Luo, C. ; Tian, C. T. ; Kamei, K . Self-amplifying ROS-responsive SN38 prodrug nanoparticles for combined chemotherapy and ferroptosis in cancer treatment . Carbon , 2025 , 235 , 120099 .
Yan, H. ; Xu, P. C. ; Cong, H. L. ; Yu, B. ; Shen, Y. Q . Research progress in construction of organic carrier drug delivery platform using tumor microenvironment . Mater. Today Chem. , 2024 , 37 , 101997 .
Chen, W. Q. ; Zhang, Z. ; Han, Y. F. ; Li, X. Y. ; Liu, C. H. ; Sun, Y. J. ; Ren, Y. Y. ; Guan, X. W . Remodeling tumor microenvironment by versatile nanoplatform orchestrated mechanotherapy with chemoimmunotherapy to synergistically enhance anticancer efficiency . Biomaterials , 2025 , 317 , 123104 .
Vaupel, P. ; Kallinowski, F. ; Okunieff, P . Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review . Cancer Res. , 1989 , 49 ( 23 ), 6449 – 6465 .
Zhang, H. P. ; Liu, J. ; Chen, Q. X. ; Mi, P . Ligand-installed anti-VEGF genomic nanocarriers for effective gene therapy of primary and metastatic tumors . J. Control. Release , 2020 , 320 , 314 – 327 .
Andersen, M. H . Tumor microenvironment antigens . Semin. Immunopathol. , 2023 , 45 ( 2 ), 253 – 264 .
Anderson, N. M. ; Simon, M. C . The tumor microenvironment . Curr. Biol. , 2020 , 30 ( 16 ), R921 – R925 .
Gupta, S. S. ; Mishra, V. ; das Mukherjee, M. ; Saini, P. ; Ranjan, K. R . Amino acid derived biopolymers: recent advances and biomedical applications . Int. J. Biol. Macromol. , 2021 , 188 , 542 – 567 .
Han, J. ; Dong, H. ; Zhu, T. Y. ; Wei, Q. ; Wang, Y. H. ; Wang, Y. ; Lv, Y. ; Mu, H. R. ; Huang, S. D. ; Zeng, K. ; Xu, J. ; Ding, J. X . Biochemical hallmarks-targeting antineoplastic nanotherapeutics . Bioact. Mater. , 2024 , 36 , 427 – 454 .
Wei, Y. H. ; Weng, X. ; Wang, Y. Y. ; Yang, W. J . Stimuli-responsive polymersomes: reshaping the immunosuppressive tumor microenvironment . Biomacromolecules , 2024 , 25 ( 8 ), 4663 – 4676 .
徐孝旭 , 陈启凡 , 路艳华 , 顾盼盼 . 基于聚(谷氨酸-酪氨酸-丙氨酸)嵌段共聚物的纳米药物载体制备与药物释放行为研究 . 高分子通报 , 2021 ( 12 ), 56 – 62 .
王宛滢 , 李宁 , 宋子元 . 刺激响应性聚氨基酸材料的设计与应用 . 材料导报 , 2025 , 39 ( 5 ), 26 – 38 .
廖日鑫 , 李国华 , 张计敏 , 胡秀丽 , 瞿雄伟 . 聚氨基酸在肿瘤免疫治疗中的应用 . 高分子材料科学与工程 , 2021 , 37 ( 8 ), 182 – 190 .
漆李矜 , 黄琪杨 , 高晴妤 , 韩笛 , 廖馨茹 , 张先正 , 程巳雪 . 氨基酸基材料在基因与药物传递领域的应用 . 高分子学报 , 2025 , 56 ( 1 ), 1 – 25 .
唐文强 , 高艳蓉 , 刘斌 , 仝红娟 , 何志鹏 , 张翠亚 . 智能响应型纳米药物载体的研究进展 . 精细化工 , 2020 , 37 ( 5 ), 883 – 892 .
Mi, P . Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics . Theranostics , 2020 , 10 ( 10 ), 4557 – 4588 .
Gong, Q. F. ; Song, X. J. ; Tong, Y. ; Huo, L. X. ; Zhao, X. F. ; Han, Y. Y. ; Shen, W. ; Ru, J. X. ; Shen, X. ; Liang, C . Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification . J. Nanobiotechnology , 2025 , 23 ( 1 ), 42 .
Zeiss, C. J. ; Gatti, D. M. ; Toro-Salazar, O. ; Davis, C. ; Lutz, C. M. ; Spinale, F. ; Stearns, T. ; Furtado, M. B. ; Churchill, G. A . Doxorubicin-induced cardiotoxicity in collaborative cross (CC) mice recapitulates individual cardiotoxicity in humans . G3-genes Genom Genet , 2019 , 9 ( 8 ), 2637 – 2646 .
Yin, T. J. ; Wang, Y. Y. ; Chu, X. X. ; Fu, Y. ; Wang, L. ; Zhou, J. P. ; Tang, X. M. ; Liu, J. Y. ; Huo, M. R . Free adriamycin-loaded pH/reduction dual-responsive hyaluronic acid-adriamycin prodrug micelles for efficient cancer therapy . ACS Appl. Mater. Interfaces , 2018 , 10 ( 42 ), 35693 – 35704 .
Lu, D. D. ; Wang, J. C. ; Li, Y. F. ; Zhang, Y. Y. ; Yu, L. L. ; Xu, T. T. ; Guo, H. Y. ; Zhang, Y. D. ; Wang, X. D. ; Wang, X. Q. ; Teng, G. J. ; Lei, Z. Q . Tumor noninvasive and target embolization therapy platform by intravenous injection based on acidic Microenvironment-responsive hyperbranched Poly(amino acid)s . ACS Cent. Sci. , 2020 , 6 ( 11 ), 1977 – 1986 .
Brunato, S. ; Mastrotto, F. ; Bellato, F. ; Bastiancich, C. ; Travanut, A. ; Garofalo, M. ; Mantovani, G. ; Alexander, C. ; Preat, V. ; Salmaso, S. ; Caliceti, P . PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study . J. Control. Release , 2021 , 335 , 21 – 37 .
Tejada-Berges, T. ; Granai, C. ; Gordinier, M. ; Gajewski, W . Caelyx/doxil for the treatment of metastatic ovarian and breast cancer . Expert Rev. Anticancer Ther. , 2002 , 2 ( 2 ), 143 – 150 .
Li, Y. ; Bui, Q. N. ; Duy, L. T. M. ; Yang, H. Y. ; Lee, D. S . One-step preparation of pH-responsive polymeric nanogels as intelligent drug delivery systems for tumor therapy . Biomacromolecules , 2018 , 19 ( 6 ), 2062 – 2070 .
Yan, R. ; Liu, X. Y. ; Xiong, J. J. ; Feng, Q. Y. ; Xu, J. H. ; Wang, H. B. ; Xiao, K . pH-Responsive hyperbranched polypeptides based on Schiff bases as drug carriers for reducing toxicity of chemotherapy . RSC Adv. , 2020 , 10 ( 23 ), 13889 – 13899 .
Glorieux, C. ; Liu, S. H. ; Trachootham, D. ; Huang, P . Targeting ROS in cancer: rationale and strategies . Nat. Rev. Drug Discov. , 2024 , 23 ( 8 ), 583 – 606 .
Guo, Q. Y. ; Tang, Y. N. ; Wang, S. M. ; Xia, X. H . Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment , Redox. Biol. , 2025 , 80 , 103515 .
Luo, Q. ; Sun, J. F. ; Li, Z. B. ; Liu, B. ; Ding, J. X . Thermo-sensitive poly(amino acid) hydrogel mediates cytoprotection through an antioxidant mechanism . Chin. Chem. Lett. , 2025 , 36 ( 7 ), 110433 .
Wang, S. B. ; Nie, F. ; Lin, Z. ; Xu, J. ; Guo, Y. Q . Natural polysaccharide-small molecule smart responsive nanogels: design, synthesis, and synergistic chemoimmunotherapy for tumors . Int. J. Biol. Macromol. , 2025 , 305 , 140930 .
Liu, J. ; You, X. R. ; Wang, L. Y. ; Zeng, J. W. ; Huang, H. ; Wu, J . ROS-responsive and self-tumor curing methionine polymer library based nanoparticles with self-accelerated drug release and hydrophobicity/hydrophilicity switching capability for enhanced cancer therapy . Small , 2024 , 20 ( 36 ), 2401438 .
Yuan, Y. ; Zhao, L. Q. ; Shen, C. Y. ; He, Y. ; Yang, F. ; Zhang, G. L. ; Jia, M. D. ; Zeng, R. ; Li, C. ; Qiao, R. Z . Reactive oxygen species-responsive amino acid-based polymeric nanovehicles for tumor-selective anticancer drug delivery . Mater. Sci. Eng. C , 2020 , 106 , 110159 .
Hoang, Q. T. ; Lee, D. ; Choi, D. G. ; Kim, Y. C. ; Shim, M. S . Efficient and selective cancer therapy using pro-oxidant drug-loaded reactive oxygen species (ROS)-responsive polypeptide micelles . J. Ind. Eng. Chem. , 2021 , 95 , 101 – 108 .
Ge, C. L. ; Zhu, J. L. ; Wu, G. Q. ; Ye, H. ; Lu, H. ; Yin, L. C . ROS-responsive selenopolypeptide micelles: preparation, characterization, and controlled drug release , Biomacromolecules , 2022 , 23 ( 6 ), 2647 – 2654 .
Li, M. L. ; Li, T. ; Liu, Y. ; Han, D. D. ; Wu, S. G. ; Gong, J. B . Dual cascade-responsive multifunctional nanoparticles to overcome bacterium-induced drug inactivation and enhanced photodynamic and chemo-immunotherapy of pancreatic cancer . Small , 2025 , 21 ( 17 ), 2412707 .
Cao, J. R. ; Hong, K. Z. ; Lv, C. Q. ; Jiang, W. T. ; Chen, Q. ; Wang, R. Z. ; Wang, Y . Reduction-sensitive polymeric carrier for the targeted delivery of a quinazoline derivative for enhanced generation of reactive oxygen species against cancer . Biomater. Sci. , 2024 , 12 ( 10 ), 2626 – 2638 .
Hu, Z. ; Wang, G. S. ; Zhang, R. ; Wang, L. J. ; Wang, J. W. ; Hu, J. S. ; Reheman, A . Construction of poly(amino acid)s nano-delivery system and sustained release with redox-responsive . Colloids Surf. B Biointerfaces , 2023 , 224 , 113232 .
Wei, L. Y. ; Chen, J. J. ; Zhao, S. H. ; Ding, J. X. ; Chen, X. S . Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs . Acta Biomater. , 2017 , 58 , 44 – 53 .
Cui, Y. H. ; Deng, R. ; Li, X. S. ; Wang, X. H. ; Jia, Q. ; Bertrand, E. ; Meguellati, K. ; Yang, Y. W . Temperature-sensitive polypeptide brushes-coated mesoporous silica nanoparticles for dual-responsive drug release . Chin. Chem. Lett. , 2019 , 30 ( 12 ), 2291 – 2294 .
Gu, P. P. ; Liu, J. H. ; Gao, T. ; Ma, Q. P. ; Gao, S. Y. ; Li, N. ; Zhang, W. H. ; Xia, Z. X. ; Yang, Q. L. ; Mu, W. W. ; Liang, S. ; Fu, S. L. ; Yuan, S. J. ; Wei, S. Y. ; Liu, J. ; Yang, Y. X. ; Yan, X. X. ; Liu, Y. J. ; Wang, C. ; Zhang, N . Temperature-sensitive nano-GOx combined with downregulation of tumor stemness to initiate robust antitumor efficacy . ACS Nano , 2025 , 19 ( 12 ), 11738 – 11755 .
Porta, F. ; Ehrsam, D. ; Lengerke, C. ; Meyer Zu Schwabedissen, H. E . Synthesis and characterization of PDMS-PMOXA-based polymersomes sensitive to MMP-9 for application in breast cancer . Mol. Pharm. , 2018 , 15 ( 11 ), 4884 – 4897 .
You, Y. W. ; Xu, Z. Y. ; Chen, Y . Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer . Drug Deliv. , 2018 , 25 ( 1 ), 448 – 460 .
Han, Q. J. ; Lan, X. T. ; Wen, Y. ; Zhang, C. Z. ; Cleary, M. ; Sayyed, Y. ; Huang, G. D. ; Tuo, X. L. ; Yi, L. ; Xi, Z. ; Li, L. Y. ; Zhang, Q. Z . Matrix metalloproteinase-9-responsive surface charge-reversible nanocarrier to enhance endocytosis as efficient targeted delivery system for cancer diagnosis and therapy . Adv. Healthc. Mater. , 2021 , 10 ( 9 ), 2002143 .
Chen, W. H. ; Luo, G. F. ; Lei, Q. ; Jia, H. Z. ; Hong, S. ; Wang, Q. R. ; Zhuo, R. X. ; Zhang, X. Z . MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery . Chem. Commun. , 2015 , 51 ( 3 ), 465 – 468 .
Jiang, J. ; Shen, N. ; Ci, T. Y. ; Tang, Z. H. ; Gu, Z. ; Li, G. ; Chen, X. S . Combretastatin A4 nanodrug-induced MMP9 amplification boosts tumor-selective release of doxorubicin prodrug . Adv. Mater. , 2019 , 31 ( 44 ), 1904278 .
Zhao, W. ; Zhao, Y. M. ; Wang, Q. F. ; Liu, T. Q. ; Sun, J. J. ; Zhang, R . Remote light-responsive nanocarriers for controlled drug delivery: Advances and perspectives . Small , 2019 , 15 ( 45 ), 1903060 .
Thakur, N. S. ; Saleh, N. ; Khan, A. F. ; Chakrabarty, B. ; Agrahari, V . Progress and promise of photoresponsive nanocarriers for precision drug delivery in cancer . J. Photochem. Photobiol. C Photochem. Rev. , 2024 , 59 , 100665 .
Lv, R. K. ; Qian, Z. Z. ; Zhao, X. P. ; Xiong, F. ; Xu, Y. J. ; Fan, W. P. ; Yao, X. K. ; Huang, W . Self-assembly of polysarcosine amphiphilic polymers-tethered gold nanoparticles for precise photo-controlled synergistic therapy . Nano Res. , 2023 , 16 ( 4 ), 5685 – 5694 .
Ma, J. J. ; Li, P. J. ; Wang, W. W. ; Wang, S. H. ; Pan, X. T. ; Zhang, F. R. ; Li, S. S. ; Liu, S. ; Wang, H. Y. ; Gao, G. ; Xu, B. L. ; Yuan, Q. P. ; Shen, H. Y. ; Liu, H. Y . Biodegradable poly(amino acid)-gold-magnetic complex with efficient endocytosis for multimodal imaging-guided chemo-photothermal therapy . ACS Nano , 2018 , 12 ( 9 ), 9022 – 9032 .
Wang, J. ; Xu, W. G. ; Zhang, N. ; Yang, C. S. ; Xu, H. W. ; Wang, Z. T. ; Li, B. S. ; Ding, J. X. ; Chen, X. S . X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy . J. Control. Release , 2021 , 332 , 1 – 9 .
Zhong, D. ; Wu, H. Y. ; Wu, Y. H. ; Li, Y. K. ; Xu, X. H. ; Yang, J. ; Gu, Z. W . Rational design and facile fabrication of biocompatible triple responsive dendrimeric nanocages for targeted drug delivery . Nanoscale , 2019 , 11 ( 32 ), 15091 – 15103 .
Liu, Y. H. ; Chen, L. J. ; Shi, Q. Y. ; Zhao, Q. ; Ma, H. S . Tumor microenvironment-responsive polypeptide nanogels for controlled antitumor drug delivery . Front. Pharmacol. , 2021 , 12 , 748102 .
Augustine, R. ; Kim, D. ; Jeon, S. H. ; Lee, T. W. ; Kalva, N. ; Kim, J. H. ; Kim, I . Chimeric poly( N -isopropylacry-lamide)- b -poly(3,4-dihydroxy- L -pheny-lalanine) nano-carriers for temperature/pH dual-stimuli-responsive theranostic application . React. Funct. Polym. , 2020 , 152 , 104595 .
Shen, C. W. ; Wang, J. W. ; Wu, X. P. ; Xu, J. L. ; Hu, J. S. ; Reheman, A . Drug release behavior of poly(amino acid)s drug-loaded nanoparticles with pH-responsive behavior . J. Drug Deliv. Sci. Technol. , 2023 , 87 , 104827 .
Hu, Z. ; Wang, J. W. ; Han, S. Y. ; Hu, J. S. ; Reheman, A . Self-assembly behavior and sustained drug release properties of amphiphilic poly(amino acid)s . New J. Chem. , 2022 , 46 ( 41 ), 19888 – 19899 .
Hu, Z. ; Zhang, R. ; Xu, S. Y. ; Wang, J. W. ; Li, X. J. ; Hu, J. S. ; Reheman, A . Construction of nano-drug delivery and antitumor system of stimuli-responsive polypeptides . Colloids Surf. B Biointerfaces , 2023 , 226 , 113310 .
Pham, T. C. ; Nguyen, V. N. ; Choi, Y. ; Lee, S. Y. ; Yoon, J . Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy . Chem. Rev. , 2021 , 121 ( 21 ), 13454 – 13619 .
Zhong, Y. ; Huang, S. ; Zheng, C. J. ; Huang, J. S. ; Li, B. ; Han, S. S. ; Xiao, H. ; Wang, Y. ; Shuai, X. T . A light and hypoxia-activated nanodrug for cascade photodynamic-chemo cancer therapy . Biomater. Sci. , 2021 , 9 ( 15 ), 5218 – 5226 .
Lee, J. S. ; Kim, J. ; Ye, Y. S. ; Kim, T. I . Materials and device design for advanced phototherapy systems . Adv. Drug Deliv. Rev. , 2022 , 186 , 114339 .
Zhang, T. ; Wu, B. H. ; Akakuru, O. U. ; Yao, C. Y. ; Sun, S. ; Chen, L. B. ; Ren, W. Z. ; Wu, A. G. ; Huang, P. T . Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer . Cancer Lett. , 2021 , 500 , 41 – 50 .
Zhang, Y. ; Uthaman, S. ; Song, W. L. ; Eom, K. H. ; Jeon, S. H. ; Huh, K. M. ; Babu, A. ; Park, I. K. ; Kim, I . Multistimuli-responsive polymeric vesicles for accelerated drug release in chemo-photothermal therapy . ACS Biomater. Sci. Eng. , 2020 , 6 ( 9 ), 5012 – 5023 .
0
Views
4
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution