Wang, Z. T.; Qiu, Y. H.; Li, Z. J; Cui, Z. B.; Zhao, Y. Q.; Feng, Q. Adipic acid-based epoxy vitrimer and its glass fiber reinforced composites. Polym. Bull. (in Chinese), 2025, 38(10), 1546–1556.
Wang, Z. T.; Qiu, Y. H.; Li, Z. J; Cui, Z. B.; Zhao, Y. Q.; Feng, Q. Adipic acid-based epoxy vitrimer and its glass fiber reinforced composites. Polym. Bull. (in Chinese), 2025, 38(10), 1546–1556. DOI: 10.14028/j.cnki.1003-3726.2025.25.155.
Adipic Acid-based Epoxy Vitrimer and Its Glass Fiber Reinforced Composites
Adipic acid is a critical raw material for polymer synthesizing
and can be used to prepare vitrimer materials with topological structure rearrangement. Through molecular thermal motion analysis and rheological characterization
the thermally reversible crosslinking behavior and viscoelastic relaxation law of the material were revealed. To address the intrinsic brittleness of conventional epoxy vitrimers
glass fibers were introduced for reinforcement and toughening. The composite maintains its reversible network structure while doubling the tensile strength and tripling the elongation at break. This performance improvement arises from synergistic interactions among multiple toughening mechanisms
including interfacial chemical bonding
fiber-bridging effects
and network topological
reorganization. The research reveals the molecular-level structure-property relationship of carboxylic acid-based vitrimers and achieves breakthrough mechanical performance
via
composite modification. This innovative approach provides a sustainable solution to address adipic acid overcapacity while demonstrating significant engineering value for promoting green circular economy development. The developed material shows promising potential for industrial applications requiring recyclable high-performance polymers.
Montarnal, D. ; Capelot, M. ; Tournilhac, F. ; Leibler, L . Silica-like malleable materials from permanent organic networks . Science , 2011 , 334 ( 6058 ), 965 – 968 .
Capelot, M. ; Montarnal, D. ; Tournilhac, F. ; Leibler, L . Metal-catalyzed transesterification for healing and assembling of thermosets . J. Am. Chem. Soc. , 2012 , 134 ( 18 ), 7664 – 7667 .
Capelot, M. ; Unterlass, M. M. ; Tournilhac, F. ; Leibler, L . Catalytic control of the vitrimer glass transition . ACS Macro Lett. , 2012 , 1 ( 7 ), 789 – 792 .
Kumar, S. ; Krishnan, S. ; Prabakaran, K . Renewable resource-based epoxy vitrimer composites for future application: a comprehensive review . ACS Sustain. Resour. Manag. , 2024 , 1 ( 9 ), 2086 – 2107 .
Sun, Y. C. ; Wang, M. M. ; Wang, Z. ; Mao, Y. F. ; Jin, L. ; Zhang, K. ; Xia, Y. Y. ; Gao, H . Amine-cured glycidyl esters as dual dynamic epoxy vitrimers . Macromolecules , 2022 , 55 ( 2 ), 523 – 534 .
Tratnik, N. ; Tanguy, N. R. ; Yan, N . Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds . Chem. Eng. J. , 2023 , 451 , 138610 .
Luo, C. M. ; Wang, W. C. ; Yang, W. ; Liu, X. Y. ; Lin, J. ; Zhang, L. Q. ; He, S. J . High-strength and multi-recyclable epoxy vitrimer containing dual-dynamic covalent bonds based on the disulfide and imine bond metathesis . ACS Sustainable Chem. Eng. , 2023 , 11 ( 39 ), 14591 – 14600 .
Memon, H. ; Liu, H. Y. ; Rashid, M. A. ; Chen, L. ; Jiang, Q. R. ; Zhang, L. Y. ; Wei, Y. ; Liu, W. S. ; Qiu, Y. P . Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability . Macromolecules , 2020 , 53 ( 2 ), 621 – 630 .
Cho, S. ; Hwang, S. Y. ; Oh, D. X. ; Park, J . Recent progress in self-healing polymers and hydrogels based on reversible dynamic B-O bonds: boronic/boronate esters, borax, and benzoxaborole . J. Mater. Chem. A , 2021 , 9 ( 26 ), 14630 – 14655 .
Röttger, M. ; Domenech, T. ; van der Weegen, R. ; Breuillac, A. ; Nicolaÿ, R. ; Leibler, L . High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis . Science , 2017 , 356 ( 6333 ), 62 – 65 .
Zhang, X. T. ; Wang, S. J. ; Jiang, Z. K. ; Li, Y. ; Jing, X. L . Boronic ester based vitrimers with enhanced stability via internal boron-nitrogen coordination . J. Am. Chem. Soc. , 2020 , 142 ( 52 ), 21852 – 21860 .
Fortman, D. J. ; Sheppard, D. T. ; Dichtel, W. R . Reprocessing cross-linked polyurethanes by catalyzing carbamate exchange . Macromolecules , 2019 , 52 ( 16 ), 6330 – 6335 .
Kim, S. ; Li, K. ; Alsbaiee, A. ; Brutman, J. P. ; Dichtel, W. R . Circular reprocessing of thermoset polyurethane foams . Adv. Mater. , 2023 , 35 ( 41 ), 2305387 .
Swartz, J. L. ; Sheppard, D. T. ; Haugstad, G. ; Dichtel, W. R . Blending polyurethane thermosets using dynamic urethane exchange . Macromolecules , 2021 , 54 ( 23 ), 11126 – 11133 .
Guerre, M. ; Taplan, C. ; Nicolaÿ, R. ; Winne, J. M. ; Du Prez, F. E . Fluorinated vitrimer elastomers with a dual temperature response . J. Am. Chem. Soc. , 2018 , 140 ( 41 ), 13272 – 13284 .
Ma, Y. W. ; Jiang, X. S. ; Shi, Z. X. ; Berrocal, J. A. ; Weder, C . Closed-loop recycling of vinylogous urethane vitrimers . Angew. Chem. Int. Ed. , 2023 , 62 ( 36 ), e202306188 .
Husted, K. E. L. ; Brown, C. M. ; Shieh, P. ; Kevlishvili, I. ; Kristufek, S. L. ; Zafar, H. ; Accardo, J. V. ; Cooper, J. C. ; Klausen, R. S. ; Kulik, H. J. ; Moore, J. S. ; Sottos, N. R. ; Kalow, J. A. ; Johnson, J. A . Remolding and deconstruction of industrial thermosets via carboxylic acid-catalyzed bifunctional silyl ether exchange . J. Am. Chem. Soc. , 2023 , 145 ( 3 ), 1916 – 1923 .
Tretbar, C. A. ; Neal, J. A. ; Guan, Z. B . Direct silyl ether metathesis for vitrimers with exceptional thermal stability . J. Am. Chem. Soc. , 2019 , 141 ( 42 ), 16595 – 16599 .
Fang, H. G. ; Ye, W. J. ; Ding, Y. S. ; Winter, H. H . Rheology of the critical transition state of an epoxy vitrimer . Macromolecules , 2020 , 53 ( 12 ), 4855 – 4862 .
Meng, F. L. ; Saed, M. O. ; Terentjev, E. M . Rheology of vitrimers . Nat. Commun. , 2022 , 13 , 5753 .
Perego, A. ; Lazarenko, D. ; Cloitre, M. ; Khabaz, F . Microscopic dynamics and viscoelasticity of vitrimers . Macromolecules , 2022 , 55 ( 17 ), 7605 – 7613 .
Reaction Mechanism and Viscoelasticity of Succinic Acid Based Epoxy Vitrimer
Design of Comprehensive Experimental Teaching for Polymer Chemistry Guided by Cultivating Scientific Research Thinking—Taking “Network Structure Regulation and Properties of Amine-cured Epoxy Resin Based Shape Memory Polymers” as an Example
Research Progress on Rheology of Vitrimers
Turn Mixed Dibasic Acid Waste into Epoxy Vitrimer
Research on the Autoclave Forming of Polymerized Monomer Reactant Polyimide Composite with Long-term Reusability
Related Author
WANG Zong-tao
ZHANG Jin-mei
CHEN Si-qi
HE Qing-cheng
TAN Yan-fang
FENG Qiao
LU Ping
LI Xing-jian
Related Institution
College of Materials Science and Engineering, Linyi University
School of Chemistry and Chemical Engineering, Hefei University and Technology
Research Institute of Aerospace Special Materials and Process Technology
College of Chemical Engineering, Zhejiang University of Technology
Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences