

浏览全部资源
扫码关注微信
青岛大学纺织服装学院,山东省医疗健康纺织材料重点实验室,生态纺织省部共建协同创新中心,山东省高等学校低碳纺织与功能制造实验室,青岛 266071
Received:30 May 2025,
Accepted:02 August 2025,
Published Online:15 September 2025,
Published:20 November 2025
移动端阅览
马智瑜, 房磊, 包伟, 房宽峻. 明胶/聚氧化乙烯/肉桂醛芯壳纤维界面调控与制备. 高分子通报, 2025, 38(11), 1626-1638.
Ma, Z. Y.; Fang, L.; Bao, W.; Fang, K. J. Interface regulation and preparation of gelatin/polyethylene oxide/cinnamaldehyde core-Shell Fibers. Polym. Bull. (in Chinese), 2025, 38(11), 1626-1638.
马智瑜, 房磊, 包伟, 房宽峻. 明胶/聚氧化乙烯/肉桂醛芯壳纤维界面调控与制备. 高分子通报, 2025, 38(11), 1626-1638. DOI: 10.14028/j.cnki.1003-3726.2025.25.160.
Ma, Z. Y.; Fang, L.; Bao, W.; Fang, K. J. Interface regulation and preparation of gelatin/polyethylene oxide/cinnamaldehyde core-Shell Fibers. Polym. Bull. (in Chinese), 2025, 38(11), 1626-1638. DOI: 10.14028/j.cnki.1003-3726.2025.25.160.
芯壳纤维作为具有包埋与封装功能的微纳米材料,在药物控释、组织工程和智能纺织品等领域具有重要应用价值。本研究采用微流控旋转纺丝技术,以明胶(gelatin
GEL)/聚氧化乙烯(polyethylene oxide
PEO)为壳层、肉桂醛(cinnamaldehyde
CA)/PEO为芯层制备芯壳纤维,重点探究PEO质量分数(40和60 mg/g)对体系的影响。实验表明,60 mg/g PEO壳液具有更高的黏度(28906 mPa·s)和更大的接触角(91.2°),显著延缓了芯液铺展。所制备的纤维呈现均匀平行排列结构(平均直径(1865.0±16.9) nm),并成功包埋CA活性成分。纤维表现出优异的亲水性和独特力学性能(抗拉强度0.8 MPa,断裂伸长率0.8%),这源于GEL刚性网络与PEO柔性链的协同作用。研究揭示了芯壳界面演化的三阶段过程:初始黏度差驱动渗透、中期黏弹性网络松弛调控重组、最终达到面张力平衡。高PEO浓度通过增强黏弹性网络有效抑制芯液扩散,形成稳定界面结构。该研究为功能性芯壳纤维的可控制备提供了理论依据。
Core-shell fibers
as micro-nano materials with embedding and encapsulation functions
possess significant application values in fields such as controlled drug release
tissue engineering
and smart textiles. In this study
microfluidic spinning technology was employed to fabricate core-shell fibers with gelatin (GEL)/poly(ethylene oxide) (PEO) as the shell layer and cinnamaldehyde (CA)/PEO as the core layer. The primary focus was on investigating the influence of PEO mass fraction (40 and 60 mg/g) on the system. The experimental results indicate that the 60 mg/g PEO shell solution exhibits a higher viscosity (28906 mPa·s) and a larger contact angle (91.2°)
significantly retarding the spreading of the core liquid. The prepared fibers displayed a uniform and parallel arrangement structure (with an average diameter of (1865.0±16.9) nm)
successfully embedding the active component of CA. The fibers demonstrated excellent hydrophilicity and unique mechanical properties (tensile strength of 0.8 MPa and elongation at break of 0.8%)
which can be attributed to the synergistic effect of the GEL rigid network and PEO flexible chain. This study elucidates a three-stage process of core-shell interface evolution: initial viscosity differences drive penetration
mid-term viscoelastic network relaxation regulates reorganization
and ultimately achieves surface tension equilibrium. A high PEO concentration effectively suppresses the diffusion of the core liquid by enhancing the viscoelastic network and forming a stable interface structure. This study provides theoretical support for the controlled preparation of functional core-shell fibers.
Xia, Y. J. ; Zhang, Z. ; Chen, G. B. ; Xia, X. X. ; Zhao, S. ; Fei, Z. F. ; Li, K. F. ; Yang, Z. C . Facile fabrication of lightweight hollow core-shell SiC@SiO 2 fibers for high-temperature thermal insulation . Compos. Commun. , 2025 , 56 , 102360 .
Qiu, S. C. ; Teng, X. H. ; Zhang, Y. X. ; Wang, X. ; Chen, K. K. ; Zhao, J. ; Huang, Q. L . Wearing comfortable and high electrical output TENGs woven with PTFE core-shell nanofiber yarns . Chem. Eng. J. , 2025 , 505 , 159501 .
Wen, J. ; Luo, X. ; Liu, H. ; Ma, T. T. ; Liu, J. S. ; Li, Y. B. ; Li, J. D . Integrated anti-inflammatory and anti-fibrosis dual drug-loaded core-shell fiber scaffolds: Diabetic wound healing and scar reduction . J. Mater. Sci. Technol. , 2025 , 237 , 155 – 170 .
Zare, M. R. ; Khorram, M. ; Barzegar, S. ; Asadian, F. ; Zareshahrabadi, Z. ; Saharkhiz, M. J. ; Ahadian, S. ; Zomorodian, K . Antimicrobial core–shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing . Int. J. Pharm. , 2021 , 603 , 120698 .
Huang, C. ; Ma, L. ; Mao, C. K. ; Sun, P. ; Xu, L. ; Shao, H. Y. ; Wang, R. R. ; Wu, M. H. ; Ma, H. J . Constructing amidoxime adsorption sites on the core-shell structured natural silk protein for uranium capture . Int. J. Biol. Macromol. , 2024 , 267 , 131608 .
Duan, M. X. ; Sun, J. S. ; Yu, S. ; Zhi, Z. J. ; Pang, J. ; Wu, C. H . Insights into electrospun pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food antibacterial packaging . Int. J. Biol. Macromol. , 2023 , 233 , 123433 .
Wang, X. Y. ; Zhang, T. Y. ; Dai, W. L. ; Gao, C. Y. ; Tang, Y. J. ; Yu, Y. J. ; Tian, H. ; Yang, X. P. ; Cai, Q . Co-delivering GAG/Mg-GA MOF-through core-shell nanofibers for enhanced osteoarthritis cartilage regeneration . Chem. Eng. J. , 2025 , 513 , 163019 .
Liu, Y. B. ; Chen, X. H. ; Lin, X. D. ; Yan, J. Y. ; Yu, D. G. ; Liu, P. ; Yang, H . Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: a review . Wires Nanomed. Nanobiotechnol. , 2024 , 16 ( 2 ), e1954 .
Rajabifar, N. ; Rostami, A. ; Afshar, S. ; Mosallanezhad, P. ; Zarrintaj, P. ; Shahrousvand, M. ; Nazockdast, H . Wound dressing with electrospun core-shell nanofibers: from material selection to synthesis . Polymers , 2024 , 16 ( 17 ), 2526 .
Sperling, L. E. ; Reis, K. P. ; Pranke, P. ; Wendorff, J. H . Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery . Drug Discov. Today , 2016 , 21 ( 8 ), 1243 – 1256 .
Han, L. Y. ; Zhu, J. Z. ; Jones, K. L. ; Yang, J. X. ; Zhai, R. Y. ; Cao, J. J. ; Hu, B . Fabrication and functional application of zein-based core-shell structures: A review . Int. J. Biol. Macromol. , 2024 , 272 , 132796 .
刘辉灿 , 殷亚然 , 王之豪 , 陈秀芳 , 张先明 . 基于微流控技术的载银螺旋海藻复合纤维的绿色连续制备 . 复合材料学报 , 2024 , 41 ( 12 ), 6725 – 6736 .
郭佳慧 , 汪雨 , 许冬雨 , 赵远锦 . 导电微纤维的微流控制备及其在柔性电子领域的应用 . 科学通报 , 2023 , 68 ( 13 ), 1653 – 1665 .
Ding, X. ; Zhuge, W. T. ; Zhang, Y. ; Ding, S. J. ; Wang, J. ; Zhou, G. H . Microfluidic generation of bioinspired core–shell structured microfibers for cultured meat . Chem. Eng. J. , 2023 , 478 , 147467 .
Li, R. ; Feng, Y. L. ; Zhang, S. ; Zhang, H. J. ; Ren, F. Y. ; Liu, J. ; Wang, J . Dynamic mechanism and structural property analysis of microfluidic-obtained pea protein fiber . J. Food Eng. , 2025 , 387 , 112316 .
Wen, S. X. ; Zhao, H. Q. ; Zhang, Y. ; Cao, D. D. ; Liu, M. J. ; Yang, H. M. ; Zhang, W. F . Multifunctional nanofiber membranes constructed by microfluidic blow-spinning to inhibit scar formation at early intervention stage . ACS Appl. Mater. Interfaces , 2024 , 16 ( 39 ), 53042 – 53059 .
邓丽珊 , 侯超 , 余景红 , 郑心怡 , 雷静秋 , 李庭晓 , 辛斌杰 . PVA/CS与PEO/SA双层纳米纤维膜的制备及其性能 . 上海纺织科技 , 2024 , 52 ( 10 ), 20 – 24 .
Negahdari, N. ; Alizadeh, S. ; Majidi, J. ; Saeed, M. ; Ghadimi, T. ; Tahermanesh, K. ; Arabsorkhi-Mishabi, A. ; Pezeshki-Modaress, M . Heat-treated alginate-polycaprolactone core-shell nanofibers by emulsion electrospinning process for biomedical applications . Int. J. Biol. Macromol. , 2024 , 275 , 133709 .
郝中乾 . 静电纺丝技术制备皮肤修复用纤维膜 . 硕士学位论文 , 北京 : 北京化工大学 , 2021 .
Rakhshani, A. ; Maghsoudian, S. ; Ejarestaghi, N. M. ; Yousefi, M. ; Yoosefi, S. ; Asadzadeh, N. ; Fatahi, Y. ; Darbasizadeh, B. ; Nouri, Z. ; Bahadorikhalili, S. ; Shaabani, A. ; Farhadnejad, H. ; Motasadizadeh, H . Polyethylene oxide-chitosan-doxorubicin/polycaprolactone-chitosan-curcumin pH-sensitive core/shell nanofibrous mats for the treatment of breast cancer: Fabrication, characterization and in vitro and in vivo evaluation . Int. J. Biol. Macromol. , 2025 , 305 ( Pt 2 ), 141191 .
Miranda-Cadena, K. ; Marcos-Arias, C. ; Mateo, E. ; Aguirre-Urizar, J. M. ; Quindós, G. ; Eraso, E . In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms . Biomed. Pharmacother. , 2021 , 143 , 112218 .
Almoiliqy, M. ; Wen, J. ; Xu, B. ; Sun, Y. C. ; Lian, M. Q. ; Li, Y. L. ; Qaed, E. ; Al-Azab, M. ; Chen, D. P. ; Shopit, A. ; Wang, L. ; Sun, P. Y. ; Lin, Y . Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53 . Acta Pharmacol. Sin. , 2020 , 41 ( 9 ), 1208 – 1222 .
Banaszak, M. ; Górna, I. ; Woźniak, D. ; Przysławski, J. ; Drzymała-Czyż, S . The impact of curcumin, resveratrol, and cinnamon on modulating oxidative stress and antioxidant activity in type 2 diabetes: moving beyond an anti-hyperglycaemic evaluation . Antioxidants , 2024 , 13 ( 5 ), DOI: 10.3390/antiox13050510 https://doi.org/10.3390/antiox13050510 .
Norouzi, M. R. ; Ghasemi-Mobarakeh, L. ; Itel, F. ; Schoeller, J. ; Fashandi, H. ; Borzi, A. ; Neels, A. ; Fortunato, G. ; Rossi, R. M . Emulsion electrospinning of sodium alginate/poly(ε-caprolactone) core/shell nanofibers for biomedical applications . Nanoscale Adv. , 2022 , 4 ( 13 ), 2929 – 2941 .
Han, W. S. ; Wang, L. Y. ; Sun, J. X. ; Shi, Y. C. ; Cui, S. ; Yang, D. Z. ; Nie, J. ; Ma, G. P . Dual-drug-loaded core-shell electrospun nanofiber dressing for deep burns . ACS Appl. Bio. Mater. , 2024 , 7 ( 2 ), 1179 – 1190 .
Li, M. W. ; Zhang, Y. N. ; Xu, B. J. ; Ren, H. T. ; Gao, Y. J. ; Wu, J. D . Gelatinase-responsive core-shell nanofiber membranes for anti-adhesion applications . Int. J. Biol. Macromol. , 2025 , 296 , 139725 .
Xu, F. L. ; Wang, S. N. ; Cao, C. X. ; Ma, W. Y. ; Zhang, X. ; Du, J. H. ; Sun, W. T. ; Ma, Q. M . Microfluidic generation of multifunctional core-shell microfibers promote wound healing . Colloids Surf. B Biointerfaces , 2022 , 219 , 112842 .
龙新云 , 蔡晴 , 杨小平 , 邓旭亮 , 唐劲天 , 隋刚 . 乳酸-乙醇酸共聚物载药复合纤维制备及其释药行为研究 . 中国生物医学工程学报 , 2009 , 28 ( 6 ), 904 – 909 .
李斯日古楞 , 胡晓文 . 纳米羟基磷灰石/明胶仿生复合材料的制备及其细胞相容性 . 中南大学学报(医学版) , 2014 , 39 ( 9 ), 949 – 958 .
杨宇帆 . 静电纺丝技术制备肉桂醛活性纳米纤维膜及在冷却肉保鲜中的应用 . 硕士学位论文 , 哈尔滨 : 东北农业大学 , 2021 .
邓伶俐 , 张辉 . 玉米醇溶蛋白/明胶/羟基磷灰石纳米纤维膜制备及其性质研究 . 中国粮油学报 , 2020 , 35 ( 9 ), 54 – 61 .
杜江华 , 杨婷婷 , 郭生伟 , 喻迎春 . 有序PEO/PHB核壳超细纤维的制备及性能 . 材料工程 , 2021 , 49 ( 10 ), 123 – 131 .
Cheng, R. ; Liang, Z. B. ; Shen, H. X. ; Guo, J. Z. ; Wang, C. F. ; Chen, S . In-situ synthesis of stable perovskite quantum dots in core-shell nanofibers via microfluidic electrospinning . Chin. Chem. Lett. , 2023 , 34 ( 3 ), 107384 .
Li, R. ; Feng, Y. L. ; Zhang, H. J. ; Liu, J. ; Wang, J . Recent advances in fabricating, characterizing, and applying food-derived fibers using microfluidic spinning technology . Food Hydrocoll. , 2023 , 144 , 108947 .
0
Views
363
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621