

浏览全部资源
扫码关注微信
江苏理工学院化学化工学院,常州 213001
Received:17 July 2025,
Accepted:31 August 2025,
Published Online:14 October 2025,
Published:20 November 2025
移动端阅览
程渝斐, 范望喜. 聚乙炔导电材料的研究进展. 高分子通报, 2025, 38(11), 1591-1603.
Cheng, Y. F.; Fan, W. X. Research progress of polyacetylene conductive materials. Polym. Bull. (in Chinese), 2025, 38(11), 1591-1603.
程渝斐, 范望喜. 聚乙炔导电材料的研究进展. 高分子通报, 2025, 38(11), 1591-1603. DOI: 10.14028/j.cnki.1003-3726.2025.25.190.
Cheng, Y. F.; Fan, W. X. Research progress of polyacetylene conductive materials. Polym. Bull. (in Chinese), 2025, 38(11), 1591-1603. DOI: 10.14028/j.cnki.1003-3726.2025.25.190.
聚乙炔(polyacetylene,PA)是首个被发现的导电聚合物,其衍生物在有机电子领域一直占据重要地位。为了弥补PA在应用中存在的稳定性差与导电性低的缺陷,近年来研究人员创造了许多共聚、催化的新方法和改性手段,有效降低了其在空气中的降解速率,使其热稳定性得到了显著提高(其分解温度由80 ℃提高到了150 ℃)。同时,掺杂体系从传统的无机掺杂体系拓展到新型有机-无机掺杂体系,将掺杂聚乙炔的电导率由1.7×10
−9
S/cm提高到了1.8×10
3
S/cm,使其后续在新能源电池材料、智能穿戴、机器人传感等领域的应用具有广阔的市场前景。
Polyacetylene (PA)
the first discovered conductive polymer
and its derivatives have long held a significant position in organic electronics. To address the shortcomings of poor stability and low electrical conductivity that limit PA applications
researchers have developed numerous novel copolymerization
catalysis
and modification techniques in recent years. These methods effectively reduced the degradation rate of polyacetylene in air and significantly improved its thermal stability (its decomposition temperature increased from 80 ℃ to 150 ℃). Meanwhile
the doping system has expanded from traditional inorganic doping systems to new organic-inorganic doping systems
increasing the conductivity of doped polyacetylene from 1.7×10
−9
S/cm to 1.8×10
3
S/cm
making its subsequent applications in new energy battery materials
intelligent wearables
robot sensing
and other field
s have broad market prospects.
诸平 , 张文根 . 白川英树与导电聚合物的发现 . 大学化学 , 2003 , 18 ( 1 ), 60 – 62 .
Li, W. J. ; Zhu, K. Y. ; Jiang, W. K. ; Yang, H. M. ; Xie, W. L. ; Wang, Z. S. ; Yang, W. S . A multinitrogen π -conjugated conductive polymer stabilizing ultra-large interlayer spacing in vanadium oxides for high-performance aqueous zinc-ion batteries . Chem. Sci. , 2025 , 16 ( 24 ), 10935 – 10943 .
Shoyiga, H. O. ; Fayemi, O. E . Conductive polymers and derivatives as recognition element for electrochemical sensing of food and drug additives: a brief perspective . Heliyon , 2025 , 11 ( 2 ), e41575 .
Gao, Z. Y. ; Dong, Y. J. ; Huang, C. L. ; Hussain Abdalkarim, S. Y. ; Yu, H. Y. ; Tam, K. C . On-Demand plus and minus strategy to design conductive nanocellulose: from low-dimensional structural materials to multi-dimensional smart sensors . Chem. Eng. J. , 2025 , 510 , 161552 .
An, J. ; Chen, T. L. ; Pouri, H. ; Liu, T. L. ; Zhang, J . Machine learning-assisted development of conductive polymers . Polymer , 2025 , 333 , 128684 .
Hsu, C. Y. ; Ali, A. B. M. ; Mayani, S. V. ; Ballal, S. ; Abosaoda, M. K. ; Singh, A. ; Ray, S. ; Sinha, A. ; Joshi, K. K. ; Irshad, S. M. ; Islam, S . Recent progress in bimetallic and monometallic sulfides and their composites with carbon, MOF, and conductive polymers for high-energy supercapacitor . Inorg. Chem. Commun. , 2025 , 179 , 114828 .
Goyal, M. ; Singh, K. ; Bhatnagar, N . Conductive polymers: a multipurpose material for protecting coating . Prog. Org. Coat. , 2024 , 187 , 108083 .
Andreeva, N. A. ; Chaban, V. V . Conductive polymer polyacetylene under voltage captures carbon dioxide . J. Mol. Liq. , 2025 , 430 , 127765 .
Yang, L. Y. ; Yang, L. ; Wu, S. N. ; Wei, F. ; Hu, Y. ; Xu, X. R. ; Zhang, L. ; Sun, D. P . Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature . Sens. Actuat. B Chem. , 2020 , 323 , 128689 .
Elamin, N. Y. ; Modwi, A. ; Abd El-Fattah, W. ; Rajeh, A . Synthesis and structural of Fe 3 O 4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel poly(methyl methacrylate)/polyaniline composite for electromagnetic and optical applications . Opt. Mater. , 2023 , 135 , 113323 .
Waleed, R. ; Al-Bermany, E . Impact of GO and ITO nanostructures’ performance on the nanostructure and optical behavior of a newly fabricated blended-PPY conductive polymer for antibacterial applications . J. Biosaf. Biosecur. , 2025 , 7 ( 2 ), 79 – 90 .
Hassan, A. ; Ismail, M. ; Reshak, A. H. ; Zada, Z. ; Khan, A. A. ; Fazal Ur Rehman, M. ; Arif, M. ; Siraj, K. ; Zada, S. ; Murtaza, G. ; Ramli, M. M . Effect of heteroatoms on structural, electronic and spectroscopic properties of polyfuran, polythiophene and polypyrrole: a hybrid DFT approach . J. Mol. Struct. , 2023 , 1274 , 134484 .
Yan, S. W. ; Wang, L. ; Wu, Y. Q. ; Hou, T. T. ; Li, Y. W. ; Shen, K . Photothermal-enabled metal-free polyfuran photocatalysts for efficient solar-to-hydrogen peroxide energy conversion from seawater . Appl. Catal. B Environ. Energy , 2024 , 357 , 124337 .
Husain, A. ; Shariq, M. U. ; Alqarni, S. A. ; Giri, J. ; Kandasamy, M. ; Gunnasegaran, P. ; Kanan, M . Multifunctional polythiophene-based composites for environmental remediation and energy storage: A critical review . Mater. Today Sustain. , 2025 , 31 , 101183 .
Mahato, N. ; Farooq, O. ; Mahato, M. N. ; Pradhan, S. ; Kim, S. J. ; Wahid, M. A. ; Mehta, Y. ; Yoo, K. ; Kim, J . Polycrystalline polythiophene-boron doped rGO composite exhibiting a unique charge storage mechanism and exceptional stability: A rigorous EIS investigative model to explore the material's integrity . Appl. Surf. Sci. , 2025 , 711 , 164082 .
Gao, Z. Q. ; Araby, S. ; Bakhbergen, U. ; Zhao, K. B. ; Yu, Y. ; Peng, S. H. ; Cai, R. ; Meng, Q. S . Efficient production of ultrafine poly-p-phenylene benzobisoxazole nanofibres for high-performance polyurea nanocomposites . Prog. Org. Coat. , 2025 , 205 , 109301 .
El-Khouly, M. E. ; Kobaisy, A. M. ; Yildirim, E. ; El-Shafei, A . A combined experimental and computational study of electron transfer in the light harvesting perylenediimide-poly( p -phenylene) supramolecular dyad . J. Mol. Liq. , 2025 , 427 , 127342 .
樊明如 , 马德龙 , 张朋龙 , 张浩 , 王德鹏 , 杨军 . 导电高分子材料制备及应用进展 . 山东化工 , 2024 , 53 ( 6 ), 130 – 132 .
Müllen, K. ; Scherf, U . Conjugated polymers: where we come from, where we stand, and where we might go . Macromol. Chem. Phys. , 2023 , 224 ( 3 ), 2200337 .
Namsheer, K. ; Chandra, S. R . Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications . RSC Adv. , 2021 , 11 ( 10 ), 5659 – 5697 .
黄飞 , 薄志山 , 耿延候 , 王献红 , 王利祥 , 马於光 , 侯剑辉 , 胡文平 , 裴坚 , 董焕丽 , 王树 , 李振 , 帅志刚 , 李永舫 , 曹镛 . 光电高分子材料的研究进展 . 高分子学报 , 2019 ( 10 ), 988 – 1046 .
Pisetsky, W. ; Müller, T. J. J . Recent advances in the synthesis of substituted polyacetylenes . J. Catal. , 2025 , 15 ( 1 ), 50 .
Bu, X. H. ; Zhou, Y. M. ; Zhang, T. ; He, M . Preparation of optically active substituted polyacetylene@CdSe quantum dots composites and their application for low infrared emissivity . J. Mater. Sci. , 2014 , 49 ( 20 ), 7133 – 7142 .
Zhang, F. Y. ; Guang, S. Y. ; Wei, G. ; Zhao, G. ; Ke, F. Y. ; Feng, Y. H. ; Xu, H. Y . Controllable preparation of a soluble trapezoidal polyacetylene with broadband absorption by a one-step strategy . J. Appl. Polym. Sci. , 2016 , 133 ( 42 ), 44096 .
Szuwarzyński, M. ; Wolski, K. ; Zapotoczny, S . Enhanced stability of conductive polyacetylene in ladder-like surface-grafted brushes . Polym. Chem. , 2016 , 7 ( 36 ), 5664 – 5670 .
Boswell, B. R. ; Mansson, C. M. F. ; Cox, J. M. ; Jin, Z. X. ; Romaniuk, J. A. H. ; Lindquist, K. P. ; Cegelski, L. ; Xia, Y. ; Lopez, S. A. ; Burns, N. Z . Mechanochemical synthesis of an elusive fluorinated polyacetylene . Nat. Chem. , 2021 , 13 ( 1 ), 41 – 46 .
Luppi, B. T. ; Muralidharan, A. V. ; Ostermann, N. ; Cheong, I. T. ; Ferguson, M. J. ; Siewert, I. ; Rivard, E . Redox-active heteroatom-functionalized polyacetylenes . Angew. Chem. Int. Ed. , 2022 , 61 ( 4 ), e202114586 .
胡雁鸣 , 袁学程 , 李战胜 , 增田俊夫 . 含有联苯侧基聚乙炔的合成及其气体渗透性能 . 应用化学 , 2012 , 29 ( 6 ), 617 – 622 .
Wang, J. F. ; Li, H. F. ; Liao, X. J. ; Xie, M. R. ; Sun, R. Y . Synthesis of triazole-dendronized polyacetylenes by metathesis cyclopolymerization and their conductivity . Polym. Chem. , 2016 , 7 ( 30 ), 4912 – 4923 .
Luo, T. H. ; Xu, X. B. ; Jiang, M. Q. ; Lu, Y. Z. ; Meng, H. ; Li, C. X . Polyacetylene carbon materials: Facile preparation using AlCl 3 catalyst and excellent electrochemical performance for supercapacitors . RSC Adv. , 2019 , 9 ( 21 ), 11986 – 11995 .
Ren, J. T. ; Wang, X. X. ; Liu, H. ; Hu, Y. M. ; Zhang, X. Q. ; Masuda, T . Poly(phenylacetylene)s bearing thianthrene groups as high-voltage organic cathode materials for lithium batteries . React. Funct. Polym. , 2020 , 146 , 104365 .
Zhang, Y. ; Gao, K. K. ; Zhao, Z. F. ; Yue, D. M. ; Hu, Y. M. ; Masuda, T . Helical poly(phenylacetylene)s containing schiff-base and amino groups: Synthesis, secondary structures, and responsiveness to benzoic acid . J. Polym. Sci. Part A Polym. Chem. , 2013 , 51 ( 24 ), 5248 – 5256 .
Miao, Z. H. ; Esper, A. M. ; Nadif, S. S. ; Gonsales, S. A. ; Sumerlin, B. S. ; Veige, A. S . Semi-conducting cyclic copolymers of acetylene and propyne . React. Funct. Polym. , 2021 , 169 , 105088 .
宋林花 , 王国锋 , 姜翠玉 , 胡明明 . 聚乙炔/活性炭复合材料的制备及其导电性能的研究 . 材料导报 , 2013 , 27 ( 2 ), 83 – 85 .
Wang, C. F. ; Li, H. F. ; Zhang, H. C. ; Sun, R. Y. ; Song, W. ; Xie, M. R . Enhanced ionic and electronic conductivity of polyacetylene with dendritic 1, 2, 3-triazolium-oligo(ethylene glycol) pendants . Macromol. Chem. Phys. , 2018 , 219 ( 11 ), 1800025 .
Wu, J. ; Walker, V. E. J. ; Boyd, R. J . A theoretical study of the structure and conductivity of polycytosineacetylene . Chem. Phys. Lett. , 2011 , 506 ( 4-6 ), 243 – 247 .
Wang, X. ; Tang, X. Y. ; Zhang, P. J. ; Wang, Y. D. ; Gao, D. X. ; Liu, J. ; Hui, K. L. ; Wang, Y. J. ; Dong, X. ; Hattori, T. ; Sano-Furukawa, A. ; Ikeda, K. ; Miao, P. ; Lin, X. H. ; Tang, M. X. ; Zuo, Z. C. ; Zheng, H. Y. ; Li, K. ; Mao, H. K . Crystalline fully carboxylated polyacetylene obtained under high pressure as a Li-ion battery anode material . J. Phys. Chem. Lett. , 2021 , 12 ( 50 ), 12055 – 12061 .
Wu, J. H. ; Li, H. F. ; Zhou, D. D. ; Liao, X. J. ; Xie, M. R. ; Sun, R. Y . Metathesis cyclopolymerization of substituted 1, 6-heptadiyne and dual conductivity of doped polyacetylene bearing branched triazole pendants . J. Polym. Sci. Part A Polym. Chem. , 2017 , 55 ( 3 ), 485 – 494 .
Shen, Y. H. ; Yadav, R. ; Wong, A. J. ; Balzer, A. H. ; Epps, T. H. ; Sumerlin, B. S. ; Veige, A. S . Fibril size control, tensile strength, and electrical properties of cyclic polyacetylene . React. Funct. Polym. , 2024 , 195 , 105810 .
罗文俊 , 付叶 , 王博 , 姚昌平 , 江东健 , 崔翠霞 , 邹志刚 . 一种电解液调控两端口太阳能充电器件性能的方法 . 中国专利 , CN202411801814. 5 . 2025-03-11 .
温丽苹 , 全昌云 , 夏海艳 , 刘丽霞 . 一种血红蛋白电化学试纸及其制备方法 . 中国专利 , CN202310998688. 6 . 2023-11 .
0
Views
595
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621