Qu, T. T.; Sun, H. Y.; Zhang, C. Y.; Guo, F. Aluminum-catalyzed copolymerization of cyclic phosphoesters with ethylene oxide. Polym. Bull. (in Chinese), 2024, 37(1), 73–79
Qu, T. T.; Sun, H. Y.; Zhang, C. Y.; Guo, F. Aluminum-catalyzed copolymerization of cyclic phosphoesters with ethylene oxide. Polym. Bull. (in Chinese), 2024, 37(1), 73–79 DOI: 10.14028/j.cnki.1003-3726.2024.23.131.
Aluminum-catalyzed Copolymerization of Cyclic Phosphoesters with Ethylene Oxide
The copolymerization of cyclic phosphoesters (including 2-methoxy-2-oxo-1
3
2-dioxapho-spholane(EMP)
2-ethoxy-2-oxo-1
3
2-dioxaphospholane (EEP) and 2-isopropoxy-2-oxo-1
3
2-dioxapho-spholane (IPP)) with ethylene oxide (EO) by
i
-Bu
3
Al/H
3
PO
4
/DBU has been examined. The microstructures
thermal properties and molecular weights of the obtained copolymers were characterized by nuclear magnetic resonance spectroscopy (NMR)
gel permeation chromatography (GPC) and differential scanning calorimeter (DSC) and copolymerization kinetics. The copolymerization of EO with EMP
EEP
IPP by
i
-Bu
3
Al/H
3
PO
4
/DBU has also been successfully achieved at 60 ℃ in 2 h to afford EO-EMP
EO-EEP
EO-IPP copolymers with controllable compositions in high yield by changing the feed ratio. The GPC analysis of copolymers showed that the copolymers possessed high molecular weight (
M
n
=1.9×10
4
−4.1×10
4
) and narrow molecular weight distribution (
M
w
/
M
n
=1.83−2.10). The alkoxy substituent group on the phosphorus atom of cyclic phosphoesters did not affect the copolymerization activity of EO with EMP
EEP and IPP
but affected the kinetic behaviours of the copolymerization and the sequence structure of the obtained copolymers. The EO-EMP copolymerization is random copolymerization
while EO-EEP and EO-IPP copolymerization are gradient copolymerization.
Penczek, S.; Libiszowski, J. Polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphospholane. kinetics and polymer microstructure. Makromol. Chem., 1988, 189(8), 1765–1785.
Bian, J.; Zhang, M. Z.; He, J. L.; Ni, P. H. Prepara-tion and self-assembly of double hydrophilic poly-(ethylethylene phosphate)-block-poly[2-(succinyloxy)ethyl methacrylate]diblock copolymers for drug delivery. React. Funct. Polym., 2013, 73(3), 579–587.
Wu, Q. H.; Wang, C. A.; Zhang, D.; Song, X. M.; Verpoort, F.; Zhang, G. L. Synthesis and micellization of amphiphilic biodegradable methoxypolyethylene glycol/poly(D,L-lactide)/polyphosphate block copolymer. React. Funct. Polym., 2011, 71(9), 980–984.
Yuan, Y. Y.; Wang, J. Temperature-induced mor-phological change of ABC 3-miktoarm star terpolymer assemblies in aqueous solution. Colloids Surf. B, 2011, 85(1), 81–85.
Wu, J.; Liu, X. Q.; Wang, Y. C.; Wang, J. Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. J. Mater. Chem., 2009, 19(42), 7856–7863.
Wang, Y. C.; Tang, L. Y.; Li, Y.; Wang, J. Ther-moresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation. Biomacromolecules, 2009, 10(1), 66–73.
Zhang, S. Y.; Zou, J.; Zhang, F. W.; Elsabahy, M.; Felder, S. E.; Zhu, J. H.; Pochan, D. J.; Wooley, K. L. Rapid and versatile construction of diverse and functional nanostructures derived from a polyphosphoester-based biomimetic block copolymer system. J. Am. Chem. Soc., 2012, 134(44), 18467–18474.
Müller, L. K.; Steinbach, T.; Wurm, F. R. Multifunctional poly(phosphoester)s with two orthogonal protective groups. RSC Adv., 2015, 5(53), 42881–42888.
Iwasaki, Y.; Yamaguchi, E. Synthesis of well-defined thermoresponsive polyphosphoester macroinitiators using organocatalysts. Macromolecules, 2010, 43(6), 2664–2666.
Zhang, S. Y.; Li, A.; Zou, J.; Lin, L. Y.; Wooley, K. L. Facile synthesis of clickable, water-soluble, and degradable polyphosphoesters. ACS Macro Lett., 2012, 1(2), 328–333.
Zhai, X.; Huang, W.; Liu, J. Y.; Pang, Y.; Zhu, X. Y.; Zhou, Y. F.; Yan, D. Y. Micelles from amphiphilic block copolyphosphates for drug delivery. Macromol. Biosci., 2011, 11(11), 1603–1610.
Clément, B.; Grignard, B.; Koole, L.; Jérôme, C.; Lecomte, P. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules, 2012, 45(11), 4476–4486.
Tee, H. T.; Zipp, R.; Koynov, K.; Tremel, W.; Wurm, F. R. Poly(methyl ethylene phosphate) hydrogels: degradable and cell-repellent alternatives to PEG-hydrogels. Eur. Polym. J., 2020, 141, 110075.
Guo, F.; Deng, M.; Li, F.; Chen, S. L. Aluminum-catalyzed statistical copolymerization of mono-, tri- and penta-fluorophenyl glycidyl ether with ethylene oxide and epichlorohydrin. Polym. Chem., 2021, 12(38), 5477–5484.
Deng, M.; Guo, F.; Li, Y.; Hou, Z. M. Synthesis of alkynyl-functionalized linear and star polyethers by aluminium-catalyzed copolymerization of glycidyl 3-butynyl ether with epichlorohydrin and ethylene oxide. Polym. Chem., 2019, 10(9), 1110–1118.
Deng, M.; Guo, F.; Liao, D. H.; Hou, Z. M.; Li, Y. Aluminium-catalyzed terpolymerization of furfuryl glycidyl ether with epichlorohydrin and ethylene oxide: Synthesis of thermoreversible polyepichlorohydrin elastomers with furan/maleimide covalent crosslinks. Polym. Chem., 2018, 9(1), 98–107.