浏览全部资源
扫码关注微信
1..浙江大学高分子科学与工程学系,杭州 310027
2..浙江大学杭州国际科创中心,杭州 311200
Published:20 January 2024,
Received:30 August 2023,
Accepted:05 October 2023
扫 描 看 全 文
吴小玲, 杜淼, 李水兴, 陈红征. 柔性电子器件: 想见未来生活方式. 高分子通报, 2024, 37(1), 1–11
Wu, X. L.; Du, M.; Li, S. X.; Chen, H. Z. Flexible electronics: toward the future scenes for lifestyle. Polym. Bull. (in Chinese), 2024, 37(1), 1–11
吴小玲, 杜淼, 李水兴, 陈红征. 柔性电子器件: 想见未来生活方式. 高分子通报, 2024, 37(1), 1–11 DOI: 10.14028/j.cnki.1003-3726.2024.23.159.
Wu, X. L.; Du, M.; Li, S. X.; Chen, H. Z. Flexible electronics: toward the future scenes for lifestyle. Polym. Bull. (in Chinese), 2024, 37(1), 1–11 DOI: 10.14028/j.cnki.1003-3726.2024.23.159.
近年来,由于柔性电子器件能耐受折叠、弯曲、压缩、拉伸的特点,使其在能源转化、穿戴设备、健康医疗、信息显示等领域具有广阔的应用前景。在可预见的未来生活方式中,电子器件的柔性化是大势所趋。文章简要介绍了柔性电子器件及其发展历程,重点阐述了柔性电池、柔性发电机、柔性传感器和柔性显示四个方面的发展概况,然后分析了柔性电子器件的制备策略与挑战,最后针对应用需求并结合已有研究成果展望该领域的未来研究方向。
Recently
flexible electronics show broad application prospects in fields of energy conversion
wearable devices
health care
information display
and so on
due to their characteristics that can be folded
bent
compressed
and stretched. In foreseeable future scenes for lifestyle
flexibility is the main trend for electronics. This article briefly introduces the development history of flexible electronics and their features
then detailly talks about the situations for flexible solar cells
flexible generators
flexible sensors
and flexible displays
after which we analyze the fabrication strategies and remaining challenges for flexible electronics
and finally outlooks the future development directions for flexible electronics according to current research outputs and specific application demands.
柔性电子器件早期认识和探索应用需求制备策略
Flexible electronicsEarly understanding and explorationApplication requirementsFabrication strategy
Clippinger, F. W.; Avery, R.; Titus, B. R.A sensory feedback system for an upper-limb amputation prosthesis. Bull. Prosthet. Res., 1974, 247–258.
Vintage Computing and Gaming homepage. www.vintagecomputing.comwww.vintagecomputing.com
Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J.Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992, 357(6378), 477–479.
Lacour, S. P.; Wagner, S.; Huang, Z. Y.; Suo, Z.Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett., 2003, 82(15), 2404–2406.
Wagner, S.; Lacour, S. P.; Jones, J.; Hsu, P. H I.; Sturm, J. C.; Li, T.; Suo, Z. G.Electronic skin: architecture and components. Phys. E, 2004, 25(2-3), 326–334.
Cai, S. S.; Han, Z. Y.; Wang, F. L.; Zheng, K. W.; Cao, Y.; Ma, Y. J.; Feng, X.Review on flexible photonics/electronics integrated devices and fabrication strategy. Sci. China Inf. Sci., 2018, 61(6), 060410.
Zou, M. Z.; Ma, Y. E.; Yuan, X.; Hu, Y.; Liu, J. E.; Jin, Z.Flexible devices: From materials, architectures to applications. J. Semicond., 2018, 39(1), 011010.
Wu, X. L.; Fu, W. F.; Chen, H. Z.Conductive polymers for flexible and stretchable organic optoelectronic applications. ACS Appl. Polym. Mater., 2022, 4(7), 4609–4623.
Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S.Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun., 2012, 3, 770.
Wang, Y. A.; Yang, L.; Shi, X. L.; Shi, X.; Chen, L. D.; Dargusch, M. S.; Zou, J.; Chen, Z. G.Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater., 2019, 31(29), 1807916.
Jin, H. R.; Zheng, Z. S.; Cui, Z. Q.; Jiang, Y.; Chen, G.; Li, W. L.; Wang, Z. M.; Wang, J. L.; Yang, C. S.; Song, W. T.; Chen, X. D.; Zheng, Y. J.A flexible optoacoustic blood ‘stethoscope’ for noninvasive multiparametric cardiovascular monitoring. Nat. Commun., 2023, 14, 4692.
http://tech.sina.com.cn/csj/2022-09-22/doc-imqqsmrp0119747.shtml.
Chang, J. A.; Huang, Q. Y.; Gao, Y. A.; Zheng, Z. J.Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater., 2021, 33(46), 2004419.
Shang, J.; Yu, W. C.; Wang, L.; Xie, C.; Xu, H. L.; Wang, W. S.; Huang, Q. Y.; Zheng, Z. J.Metallic glass-fiber fabrics: A new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Adv. Mater., 2023, 35(26), e2211748.
刘建伟, 王嘉楠, 朱蕾, 延卫. 柔性锂硫电池材料: 综述. 材料导报, 2020, 34(1), 1155–1168.
Shi, C. M.; Yu, M. P.Flexible solid-state lithium-sulfur batteries based on structural designs. Energy Storage Mater., 2023, 57, 429–459.
Luo, Y. F.; Wang, L.; Wei, Z. Y.; Huang, Q. Y.; Deng, Y. H.; Zheng, Z. J.Cracking-controlled slurry coating of mosaic electrode for flexible and high-performance lithium-sulfur battery. Adv. Energy Mater., 2023, 13(3), 2203621.
Dong, X. Y.; Zhou, X. M.; Liu, Y.; Xiong, S. X.; Cheng, J. Y.; Jiang, Y. Y.; Zhou, Y. H.Two-in-one alcohol-processed PEDOT electrodes produced by solvent exchange for organic solar cells. Energy Environ. Sci., 2023, 16(4), 1511–1519.
Zeng, G. A.; Chen, W. J.; Chen, X. B.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H. Y.; Sun, W. W.; Shen, Y. X.; Li, Y. W.; Yan, F.; Li, Y. F.Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19), 8658–8668.
Liu, Y. H.; Liu, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q.; Bao, Q. Y.; Ma, W.; Liu, W.; Li, W. W.; Wan, X. J.; Hu, X. T.; Han, Y. C.; Li, Y. W.; Zhou, Y. H.; Zou, Y. P.; Chen, Y. W.; Liu, Y. Q.; Meng, L.; Li, Y. F.; Chen, Y. S.; Tang, Z.; Hu, Z. C.; Zhang, Z. G.; Bo, Z. S.Recent progress in organic solar cells (Part II device engineering). Sci. China Chem., 2022, 65(8), 1457–1497.
Chen, Y.; Wan, J. Y.; Xu, G. Y.; Wu, X. X.; Li, X. Q.; Shen, Y. X.; Yang, F.; Ou, X. M.; Li, Y. W.; Li, Y. F.“Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness. Sci. China Chem., 2022, 65(6), 1164–1172.
Liu, Y. H.; Liu, B. W.; Ma, C. Q.; Huang, F.; Feng, G. T.; Chen, H. Z.; Hou, J. H.; Yan, L. P.; Wei, Q. Y.; Luo, Q.; Bao, Q. Y.; Ma, W.; Liu, W.; Li, W. W.; Wan, X. J.; Hu, X. T.; Han, Y. C.; Li, Y. W.; Zhou, Y. H.; Zou, Y. P.; Chen, Y. W.; Li, Y. F.; Chen, Y. S.; Tang, Z.; Hu, Z. C.; Zhang, Z. G.; Bo, Z. S.Recent progress in organic solar cells (Part I material science). Sci. China Chem., 2022, 65(2), 224–268.
Park, S.; Heo, S. W.; Lee, W.; Inoue, D.; Jiang, Z.; Yu, K.; Jinno, H.; Hashizume, D.; Sekino, M.; Yokota, T.; Fukuda, K.; Tajima, K.; Someya, T.Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561(7724), 516–521.
Zuo, L. J.; Zhang, S. H.; Li, H. Y.; Chen, H. Z.Toward highly efficient large-area ITO-free organic solar cells with a conductance-gradient transparent electrode. Adv. Mater., 2015, 27(43), 6983–6989.
Zhao, F.; Zuo, L. J.; Li, Y. K.; Zhan, L. L.; Li, S. X.; Li, X.; Xia, R. X.; Yip, H. L.; Chen, H. Z.High-performance upscaled indium tin oxide-free organic solar cells with visual esthetics and flexibility. Sol. RRL, 2021, 5(9), 2100339.
Zheng, X. J.; Zuo, L. J.; Zhao, F.; Li, Y. K.; Chen, T. Y.; Shan, S. Q.; Yan, K. R.; Pan, Y. W.; Xu, B. W.; Li, C. Z.; Shi, M. M.; Hou, J. H.; Chen, H. Z.High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater., 2022, 34(17), 2200044.
Zheng, X. J.; Zuo, L. J.; Yan, K. R.; Shan, S. Q.; Chen, T. Y.; Ding, G. Y.; Xu, B. W.; Yang, X.; Hou, J. H.; Shi, M. M.; Chen, H. Z.Versatile organic photovoltaics with a power density of nearly 40 W g−1. Energy Environ. Sci., 2023, 16(5), 2284–2294.
Xu, Z. J.; He, Z.; Huang, J. N.; Qiu, W.; Cao, L. N. Y.; Patil, A.; Yang, B. R.; Liu, X. Y.; Guo, W. X.Flexible, biocompatible, degradable silk fibroin based display. Chem. Eng. J., 2023, 464, 142477.
Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C.; Yan, H. P.; Galuska, L.; Prine, N.; Wu, H. C.; Zhong, D. L.; Chen, G.; Matsuhisa, N.; Zheng, Y.; Yu, Z. A.; Wang, Y.; Dauskardt, R.; Gu, X. D.; Tok, J. B. H.; Bao, Z. N.High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603(7902), 624–630.
Jin, W. Y.; Ovhal, M. M.; Lee, H. B.; Tyagi, B.; Kang, J. W.Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications. Adv. Energy Mater., 2021, 11(4), 2003509.
Lee, G.; Hossain, O.; Jamalzadegan, S.; Liu, Y. X.; Wang, H. Y.; Saville, A. C.; Shymanovich, T.; Paul, R.; Rotenberg, D.; Whitfield, A. E.; Ristaino, J. B.; Zhu, Y.; Wei, Q. S.Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring. Sci. Adv., 2023, 9(15), eade2232.
Gupta, A.; Sakhuja, N.; Jha, R. K.; Bhat, N.Ultrasensitive chemiresistive humidity sensor based on gold functionalized WS2 nanosheets. Sens. Actuat. A, 2021, 331, 113008.
Huang, C. B.; Yao, Y. F.; Montes-García, V.; Stoeckel, M. A.; Von Holst, M.; Ciesielski, A.; Samorì, P.Highly sensitive strain sensors based on molecules–gold nanoparticles networks for high-resolution human pulse analysis. Small, 2021, 17(8), 2007593.
Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y.Advanced carbon for flexible and wearable electronics. Adv. Mater., 2019, 31(9), 1801072.
Ji, J.; Zhou, Z. H.; Zhao, X. L.; Sun, J. D.; Sun, X. L.Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens. Bioelectron., 2015, 66, 590–595.
Yi, J. H.; Xianyu, Y. L.Gold nanomaterials-implemented wearable sensors for healthcare applications. Adv. Funct. Mater., 2022, 32(19), 2113012
Hadi, H. A. R.; Carr, C. S.; Al Suwaidi, J.Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag., 2005, 1(3), 183–198.
Gao, W.; Nyein, H. Y. Y.; Shahpar, Z.; Fahad, H. M.; Chen, K.; Emaminejad, S.; Gao, Y. J.; Tai, L. C.; Ota, H.; Wu, E.; Bullock, J.; Zeng, Y. P.; Lien, D. H.; Javey, A.Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens., 2016, 1(7), 866–874.
Lu, Y. Y.; Xu, K. C.; Zhang, L. S.; Deguchi, M.; Shishido, H.; Arie, T.; Pan, R. H.; Hayashi, A.; Shen, L.; Akita, S.; Takei, K.Multimodal plant healthcare flexible sensor system. ACS Nano, 2020, 14(9), 10966–10975.
Yin, H. Y.; Cao, Y. T.; Marelli, B.; Zeng, X. Q.; Mason, A. J.; Cao, C. Y.Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater., 2021, 33(20), e2007764.
Lee, G.; Wei, Q. S.; Zhu, Y.Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater., 2021, 31(52), 2106475.
Nassar, J. M.; Khan, S. M.; Villalva, D. R.; Nour, M. M.; Almuslem, A. S.; Hussain, M. M.Compliant plant wearables for localized microclimate and plant growth monitoring. NPJ Flex. Electron., 2018, 2, 24.
Liu, L.; Chen, J.; Liang, L. R.; Deng, L.; Chen, G. M.A PEDOT:PSS thermoelectric fiber generator. Nano Energy, 2022, 102, 107678.
Cao, T. Y.; Shi, X. L.; Chen, Z. G.Advances in the design and assembly of flexible thermoelectric device. Prog. Mater. Sci., 2023, 131, 101003.
Wu, L. L.; Li, H.; Chai, H. Y.; Xu, Q.; Chen, Y. L.; Chen, L. D.Anion-dependent molecular doping and charge transport in ferric salt-doped P3HT for thermoelectric application. ACS Appl. Electron. Mater., 2021, 3(3), 1252–1259.
Nayak, R.; Shetty, P.; Selvakumar, M.; Rao, A.; Rao, K. M.Formulation of new screen printable PANI and PANI/Graphite based inks: printing and characterization of flexible thermoelectric generators. Energy, 2022, 238, 121680.
Wu, J. S.; Sun, Y. M.; Pei, W. B.; Huang, L.; Xu, W.; Zhang, Q. C.Polypyrrole nanotube film for flexible thermoelectric application. Synth. Met., 2014, 196, 173–177.
Du, Y.; Cai, K. F.; Chen, S.; Cizek, P.; Lin, T.Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl. Mater. Interfaces, 2014, 6(8), 5735–5743.
Gao, C. Y.; Chen, G. M.In situ oxidation synthesis of p-type composite with narrow-bandgap small organic molecule coating on single-walled carbon nanotube: Flexible film and thermoelectric performance. Small, 2018, 14(12), 1703453.
Gao, J.; Liu, C. Y.; Miao, L.; Wang, X. Y.; Peng, Y.; Chen, Y.Improved thermoelectric performance in flexible tellurium nanowires/reduced graphene oxide sandwich structure hybrid films. J. Electron. Mater., 2017, 46(5), 3049–3056.
Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M.Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat. Commun., 2017, 8, 16076.
Jin, Q.; Jiang, S.; Zhao, Y.; Wang, D.; Qiu, J. H.; Tang, D. M.; Tan, J.; Sun, D. M.; Hou, P. X.; Chen, X. Q.; Tai, K. P.; Gao, N.; Liu, C.; Cheng, H. M.; Jiang, X.Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater., 2019, 18(1), 62–68.
Zhang, Z. M.; Qiu, J. J.; Wang, S. R.Roll-to-roll printing of flexible thin-film organic thermoelectric devices. Manuf. Lett., 2016, 8, 6–10.
Trung N.; Toan N.; Ono T.Electrochemical deposition based flexible thermal electric power generator with Y-type structure. Appl. Energy., 2018, 210, 467–476.
Li, Y. P.; Zeng, J. Y.; Zhao, Y.; Wang, C. R.; Zhang, C. Y.; Cheng, T. T.; Tao, J. H.; Li, J. E.; Wang, C. H.; Zhang, L.; Chen, X. Q.Fabric-based flexible thermoelectric generators: Design methods and prospects. Front. Mater., 2022, 9, 1046883.
Suarez, F.; Parekh, D. P.; Ladd, C.; Vashaee, D.; Dickey, M. D.; Öztürk, M. C.Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy, 2017, 202, 736–745.
许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展. 材料导报, 2019, 33(11), 1875–1881.
Shen, Y. F.; Zhang, H.; Zhang, J. Q.; Tian, C. Y.; Shi, Y. N.; Qiu, D. D.; Zhang, Z. Q.; Lu, K.; Wei, Z. X.In situ absorption characterization guided slot-die-coated high-performance large-area flexible organic solar cells and modules. Adv. Mater., 2023, 35(10), e2209030.
Han, Y. F.; Hu, Z. S.; Zha, W. S.; Chen, X. L.; Yin, L.; Guo, J. B.; Li, Z. Y.; Luo, Q.; Su, W. M.; Ma, C. Q.12.42% monolithic 25.42 cm2 flexible organic solar cells enabled by an amorphous ITO-modified metal grid electrode. Adv. Mater., 2022, 34(17), e2110276.
Peng, Z. X.; Xian, K. H.; Cui, Y.; Qi, Q. C.; Liu, J. W.; Xu, Y.; Chai, Y. B.; Yang, C. M.; Hou, J. H.; Geng, Y. H.; Ye, L.Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells. Adv. Mater., 2021, 33(49), e2106732.
Choi, Y.; Park, S. A.; Bae, Y.; Kim, D.; Kim, M.; Park, T.A facile method for thermally, light, and mechanically stable organic solar cells using ultraviolet-initiated crosslinkable additive. Adv. Opt. Mater., 2023, 11, 2201728.
Lee, J. W.; Seo, S.; Lee, S. W.; Kim, G. U.; Han, S.; Phan, T. N. L.; Lee, S.; Li, S.; Kim, T. S.; Lee, J. Y.; Kim, B. J.Intrinsically stretchable, highly efficient organic solar cells enabled by polymer donors featuring hydrogen-bonding spacers. Adv. Mater., 2022, 34(50), e2207544.
Wang, Y.; Zhu, C. X.; Pfattner, R.; Yan, H. P.; Jin, L. H.; Chen, S. C.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.; Murmann, B.; Bao, Z. N.A highly stretchable, transparent, and conductive polymer. Sci. Adv., 2017, 3(3), e1602076.
Yuan, H.; Jia, R. Z.; Yao, H.; Wang, W.; Qian, K.; Wu, X. L.; Li, J.; Wang, Z. T.; Lv, L. Y.; Han, M. H.; Dong, Y. L.; Wang, H. T.Ultra-stable, waterproof and self-healing serpentine stretchable conductors based on WPU sheath-wrapped conductive yarn for stretchable interconnects and wearable heaters. 2023, 473, 145251
Li, H. B.; Ma, Y. J.; Huang, Y. G.Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Mater. Horiz., 2021, 8(2), 383–400.
Mariello, M.; Kim, K.; Wu, K. L.; Lacour, S. P.; Leterrier, Y.Recent advances in encapsulation of flexible bioelectronic implants: Materials, technologies, and characterization methods. Adv. Mater., 2022, 34(34), 2201129.
Pandey, M.; Pandey, S. S.; Nagamatsu, S.; Hayase, S.; Takashima, W.Solvent driven performance in thin floating-films of PBTTT for organic field effect transistor: Role of macroscopic orientation. Org. Electron., 2017, 43, 240–246.
Min, S. Y.; Kim, T. S.; Kim, B. J.; Cho, H.; Noh, Y. Y.; Yang, H.; Cho, J. H.; Lee, T. W.Large-scale organic nanowire lithography and electronics. Nat. Commun., 2013, 4, 1773.
Park, K. S.; Baek, J.; Park, Y.; Lee, L.; Lee, Y. E K.; Kang, Y.; Sung, M. M.Nanotransfer printing: Inkjet-assisted nanotransfer printing for large-scale integrated nanopatterns of various single-crystal organic materials. Adv. Mater., 2016, 28(15), 2846.
Liang, J. J.; Tong, K.; Pei, Q. B.A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater., 2016, 28(28), 5986–5996.
Qin, D.; Xia, Y. N.; Whitesides, G. M.Soft lithography for micro- and nanoscale patterning. Nat. Protoc., 2010, 5(3), 491–502.
Feng, X. E.; Meitl, M. A.; Bowen, A. M.; Huang, Y. G.; Nuzzo, R. G.; Rogers, J. A.Competing fracture in kinetically controlled transfer printing. Langmuir, 2007, 23(25), 12555–12560.
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A.A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311(5758), 208–212.
Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T.Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. U. S. A., 2005, 102(35), 12321–12325.
Ko, H. C.; Stoykovich, M. P.; Song, J. Z.; Malyarchuk, V.; Choi, W. M.; Yu, C. J.; Geddes III, J. B.; Xiao, J. L.; Wang, S. D.; Huang, Y. G.; Rogers, J. A.A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205), 748–753.
Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G.; Cheng, H. Y.; Lu, B. W.; Yu, C. J.; Chuang, C.; Kim, T. I.; Song, T.; Shigeta, K.; Kang, S.; Dagdeviren, C.; Petrov, I.; Braun, P. V.; Huang, Y. G.; Paik, U.; Rogers, J. A.Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun., 2013, 4, 1543.
Qiu, L. B.; Deng, J. E.; Lu, X.; Yang, Z. B.; Peng, H. S.Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed., 2014, 53(39), 10425–10428.
0
Views
134
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution