浏览全部资源
扫码关注微信
1..烟台先进材料与绿色制造山东省实验室,烟台中科先进材料与绿色化工产业技术研究院,烟台 264006
2..环境友好复合材料国家民委重点实验室,甘肃省生物质功能复合材料工程研究中心,甘肃省高校环境友好复合材料及生物质利用省级重点实验室,西北民族大学化工学院,兰州 730030
3..中国科学院兰州化学物理研究所,固体润滑国家重点实验室,兰州 730000
4..兰州市口腔医院,兰州 730000
Published:20 March 2024,
Received:20 July 2023,
Accepted:09 August 2023
扫 描 看 全 文
王成硕, 颜邓伊, 任浩浩, 何彦钊, 孙初锋, 赵红梅, 李婷婷, 赵向飞, 郭蕊. 熔融沉积成型3D打印聚醚醚酮工艺优化研究进展. 高分子通报, 2024, 37(3), 316–327
Wang, C. S.; Yan, D. Y.; Ren, H. H.; He, Y. Z.; Sun, C. F.; Zhao, H. M.; Li, T. T.; Zhao, X. F.; Guo. R. Research progress on process optimization of 3D-printed poly(ether ether ketone) by fused deposition modeling. Polym. Bull. (in Chinese), 2024, 37(3), 316–327
王成硕, 颜邓伊, 任浩浩, 何彦钊, 孙初锋, 赵红梅, 李婷婷, 赵向飞, 郭蕊. 熔融沉积成型3D打印聚醚醚酮工艺优化研究进展. 高分子通报, 2024, 37(3), 316–327 DOI: 10.14028/j.cnki.1003-3726.2024.23.254.
Wang, C. S.; Yan, D. Y.; Ren, H. H.; He, Y. Z.; Sun, C. F.; Zhao, H. M.; Li, T. T.; Zhao, X. F.; Guo. R. Research progress on process optimization of 3D-printed poly(ether ether ketone) by fused deposition modeling. Polym. Bull. (in Chinese), 2024, 37(3), 316–327 DOI: 10.14028/j.cnki.1003-3726.2024.23.254.
聚醚醚酮(PEEK)因其具有耐高温、耐腐蚀、高硬度、质量轻、耐疲劳等特点,被广泛应用于机械制造、航空航天等高端领域,可作为金属材料的替代产品。随着科技的进步,PEEK材料被用于精密机械和复杂材料的制造原料,传统注塑成型已无法满足微精密、高强度零部件的需要,限制了其进一步发展和应用。然而,将3D打印技术与PEEK材料体系结合为其制造和应用的发展提供了全新的思路,其中熔融沉积成型(FDM)3D打印PEEK技术的发展尤其突出,但通过FDM成型PEEK的工艺参数因其制造方法的局限性而尚未形成统一标准。因此,本文通过综述近年来FDM工艺参数对PEEK力学性能和结晶度影响的相关研究,总结出FDM打印PEEK的最佳工艺参数,并对FDM打印PEEK的发展前景进行展望。
Due to the excellent properties of high temperature resistance
corrosion resistance
high hardness
light weight
fatigue resistance and so on
poly(ether ether ketone) (PEEK) is widely used in machinery manufacturing
aerospace and some other crucial applications instead of metals. With the development of science and technology
PEEK has already been used for precision manufacturing machinery and constructing complex structures. However
traditional injection molding cannot meet the needs for fabricating micro-precision and high-strength parts
which may limit the further development and application of PEEK. Nevertheless
the combination of PEEK and the fast-growing 3D printing techniques provides a novel thought for the development of its manufacture and application. Among the 3D printing techniques
fused deposition modeling (FDM) has been highlighted in fabricating PEEK depend on its unique advantages. But limited by the manufacturing method
the process parameters of FDM-printed PEEK have not formed a unified standard yet. Therefore
this work summarized researches about the effect of process parameters on the mechanical properties and crystallinity of FDM-printed PEEK in recent years
concluded the optimized process parameters of FDM printed PEEK
and finally provided a prospection in its development.
聚醚醚酮(PEEK)熔融沉积成型(FDM)工艺参数力学性能
Poly(ether ether ketone) (PEEK)Fused deposition modeling (FDM)Process parametersMechanical properties
张辉, 方良超, 陈奇海, 霍绍新, 姚芮. 聚醚醚酮在航空航天领域的应用. 新技术新工艺, 2018, (10), 5–8.
K. I. Wong,; Y. H. Zhong,; D. Li,; Z. H. Cheng,; Z. Y. Yu,; M. Wei,Modified porous microstructure for improving bone compatibility of poly-ether-ether-ketone. J. Mech. Behav. Biomed. Mater., 2021, 120, 104541.
任天翔, 滕晓波, 黄兴, 马金星, 赵德方, 占海华. 聚醚醚酮的改性及应用研究进展. 塑料科技, 2022, 50(9), 123–128.
张阳, 邵春光, 张瑞静, 刘成刚, 李倩, 申长雨. 聚醚醚酮增强改性及其应用. 高分子通报, 2012, (9), 56–62.
梁瑛娜, 高殿荣, 毋少峰. 海水润滑条件下316L不锈钢与仿生非光滑表面CF/PEEK的摩擦学性能. 中国表面工程, 2017, 30(1), 115–124.
N. Barhoumi,; K. Khlifi,; S. Attia-Essaies,Mechanical and bioactive properties of PVD TiO2 coating modified PEEK for biomedical applications. J. Mech. Behav. Biomed. Mater., 2023, 144, 105935.
R. M. Khallaf,; A. N. Emam,; A. A. Mostafa,; M. S. Nassif,; T. S. Hussein,Strength and bioactivity of PEEK composites containing multiwalled carbon nanotubes and bioactive glass. J. Mech. Behav. Biomed. Mater., 2023, 144, 105964.
X. Bi,; M. D. Li,; Y. C. Zhang,; M. Yin,; W. Q. Che,; Z. Y. Bi,; Y. C. Yang,; J. Ouyang,Polyetheretherketone (PEEK) as a potential material for the repair of maxillofacial defect compared with e-poly(tetrafluoroethylene) (e-PTFE) and silicone. ACS Biomater. Sci. Eng., 2023, 9(7), 4328–4340.
N. Shahrubudin,; T. C. Lee,; R. Ramlan,An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf., 2019, 35, 1286–1296.
P. M. Thabiso,; M. Cephas,; M. Mukosera,The impact and application of 3D printing technology. Int. J. Sci. Res., 2014, 3(6), 2148–2152.
I. Farina,; N. Singh,; F. Colangelo,; R. Luciano,; G. Bonazzi,; F. Fraternali,High-performance nylon-6 sustainable filaments for additive manufacturing. Materials, 2019, 12(23), 3955.
X. L. Yao,; Z. Y. Ji,; R. Guo,; C. F. Sun,; Y. X. Guo,; X. L. Wang,; Q. H. Wang,3D printing of PTFE-filled polyimide for programmable lubricating in the region where lubrication is needed. Tribol. Int., 2022, 167, 107405.
姚昕乐, 王成硕, 杨雨洁, 郭蕊, 姬忠莹, 郭玉雄, 肖骏峰, 孙初锋, 王晓龙. 光固化3D打印聚酰亚胺研究进展. 高分子通报, 2023, 36(8), 901–913.
Y. X. Guo,; J. W. Xu,; C. Y. Yan,; Y. Q. Chen,; X. Q. Zhang,; X. Jia,; Y. Liu,; X. L. Wang,; F. Zhou,Direct ink writing of high performance architectured polyimides with low dimensional shrinkage. Adv. Eng. Mater., 2019, 21(5), 1801314.
Q. Yan,; H. H. Dong,; J. Su,; J. H. Han,; B. Song,; Q. S. Wei,; Y. S. Shi,A review of 3D printing technology for medical applications. Engineering, 2018, 4(5), 729–742.
A. J. Boydston,; J. X. Cui,; C. U. Lee,; B. E. Lynde,; C. A. Schilling,100th anniversary of macromolecular science viewpoint: integrating chemistry and engi-neering to enable additive manufacturing with high-performance polymers. ACS Macro Lett., 2020, 9(8), 1119–1129.
W. W. Yang,; W. Zhao,; Q. S. Li,; H. Li,; Y. L. Wang,; Y. X. Li,; G. Wang,Fabrication of smart components by 3D printing and laser-scribing technologies. ACS Appl. Mater. Interfaces, 2020, 12(3), 3928–3935.
R. Dua,; Z. Rashad,; J. Spears,; G. Dunn,; M. Maxwell,Applications of 3D-printed PEEK via fused filament fabrication: a systematic review. Polymers, 2021, 13(22), 4046.
徐翔, 王举磊, 于洋, 宇应涛. 计算机辅助设计3D打印聚醚醚酮材料修复儿童颅骨缺损的应用. 中国数字医学, 2021, 16(1), 74–77.
B. I. Oladapo,; S. A. Zahedi,; S. O. Ismail,; F. T. Omigbodun,3D printing of PEEK and its composite to increase biointerfaces as a biomedical material—a review. Colloids Surf. B, 2021, 203, 111726.
Y. C. Zhao,; K. Zhao,; Y. C. Li,; F. Chen,Mechanical characterization of biocompatible PEEK by FDM. J. Manuf. Process., 2020, 56, 28–42.
P. Wang,; B. Zou,Improvement of heat treatment process on mechanical properties of FDM 3D-printed short- and continuous-fiber-reinforced PEEK compo-sites. Coatings, 2022, 12(6), 827.
H. Zhang,; M. D. Duan,; S. K. Qin,; Z. Y. Zhang,Preparation and modification of porous polyetheretherketone (PEEK) cage material based on fused deposition modeling (FDM). Polymers, 2022, 14(24), 5403.
郭芳, 黄硕, 刘宁, 李永锋, 胡敏, 石长全, 李涤尘, 刘昌奎. 熔融沉积成型和选择性激光烧结打印聚醚醚酮髁突假体的生物力学研究. 医用生物力学, 2021, 36(2), 264–270.
T. J. Hoskins,; K. D. Dearn,; S. N. Kukureka,Mechanical performance of PEEK produced by additive manufacturing. Polym. Test., 2018, 70, 511–519.
M. X. Yan,; X. Y. Tian,; G. Peng,; D. C. Li,; X. Y. Zhang,High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos. Sci. Technol., 2018, 165, 140–147.
W. Zheng,; J. M. Wu,; S. Chen,; K. B. Yu,; J. Zhang,; H. Liu,; S. F. Wen,; C. Z. Yan,; Y. S. Shi,Preparation of high-performance silica-based ceramic cores with B4C addition using selective laser sintering and SiO2-Al2O3 sol infiltration. Ceram. Int., 2023, 49(4), 6620–6629.
X. Zhang,; W. Fan,; T. X. Liu,Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos. Commun., 2020, 21, 100413.
蔡云冰, 刘志鹏, 张子龙, 柯俊沐, 刘金玲, 陈登龙. 聚乳酸材料在3D打印中的研究与应用进展. 应用化工, 2019, 48(6), 1463–1468.
E. J. Shin,; Y. Park,; Y. S. Jung,; H. Y. Choi,; S. Lee,Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three-dimensional printing. Polym. Eng. Sci., 2022, 62(9), 2947–2957.
R. X. Gao,; J. Xie,; J. H. Yang,; C. J. Zhuo,; J. Z. Fu,; P. Zhao,Research on the fused deposition modeling of polyether ether ketone. Polymers, 2021, 13(14), 2344.
A. Ouballouch,; R. El Alaiji,; S. Ettaqi,; A. Bouayad,; M. Sallaou,; L. Lasri,Evaluation of dimensional accuracy and mechanical behavior of 3D printed reinforced polyamide parts. Procedia Struct. Integr., 2019, 19, 433–441.
M. Tafaoli-Masoule,; M. Shakeri,; S. A. Zahedi,; M. Vaezi,Experimental investigation of process parameters in polyether ether ketone 3D printing. Proc. Inst. Mech. Eng. E, 2022, doi: 10.1177/09544089221141554.
仵博宇, 叶开, 陈家瀚, 王江华, 乌日开西·艾依提, 蒋厚峰, 滕勇. 3D打印聚醚醚酮/羟基磷灰石复合物的生物相容性评价. 中国组织工程研究, 2023, 27(12), 1932–1937.
Y. Deng,; X. Y. Shi,; Y. Chen,; W. Z. Yang,; Y. A. Ma,; X. L. Shi,; P. G. Song,; M. S. Dargusch,; Z. G. Chen,Bacteria-triggered pH-responsive osteopotentiating coating on 3D-printed polyetheretherketone scaffolds for infective bone defect repair. Ind. Eng. Chem. Res., 2020, 59(26), 12123–12135.
邢泽华. 熔融沉积成形短碳纤维聚醚醚酮复合材料的性能研究. 武汉: 华中科技大学, 2020.
王鹏. 纤维/耐热树脂复合材料FDM增材制造关键技术研究. 济南: 山东大学, 2022.
X. T. Han,; D. Yang,; C. C. Yang,; S. Spintzyk,; L. Scheideler,; P. Li,; D. C. Li,; J. Geis-Gerstorfer,; F. Rupp,Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J. Clin. Med., 2019, 8(2), 240.
S. Li,; T. Y. Wang,; J. Q. Hu,; Z. B. Li,; B. Wang,; L. C. Wang,; Z. G. Zhou,Surface porous poly-ether-ether-ketone based on three-dimensional printing for load-bearing orthopedic implant. J. Mech. Behav. Biomed. Mater., 2021, 120, 104561.
B. I. Oladapo,; S. A. Zahedi,; S. O. Ismail,Mechanical performances of hip implant design and fabrication with PEEK composite. Polymer, 2021, 227, 123865.
A. Das,; E. L. Gilmer,; S. Biria,; M. J. Bortner,Importance of polymer rheology on material extrusion additive manufacturing: correlating process physics to print properties. ACS Appl. Polym. Mater., 2021, 3(3), 1218–1249.
C. C. Yang,; X. Y. Tian,; D. C. Li,; Y. Cao,; F. Zhao,; C. Q. Shi,Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties o PEEK material. J. Mater. Process. Technol., 2017, 248, 1–7.
P. Wang,; B. Zou,; H. C. Xiao,; S. L. Ding,; C. Z. Huang,Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol., 2019, 271, 62–74.
X. H. Deng,; Z. Zeng,; B. Peng,; S. Yan,; W. C. Ke,Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials, 2018, 11(2), 216.
S. L. Ding,; B. Zou,; P. Wang,; H. J. Ding,Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test., 2019, 78, 105948.
C. P. Khunt,; M. A. Makhesana,; B. K. Mawandiya,; K. M. Patel,Investigations on the influence of printing parameters during processing of biocompatible polymer in fused deposition modelling (FDM). Adv. Mater. Process. Technol., 2022, 8(sup2), 320–336.
赵广宾, 秦勉, 刘雨, 曲晓丽, 丁铭超, 田磊, 刘亚雄, 田小永, 刘彦普. 聚醚醚酮熔融沉积成形强度工艺参数的优化. 机械工程学报, 2020, 56(3), 216–222.
A. El Magri,; K. El Mabrouk,; S. Vaudreuil,; H. Chibane,; M. E. Touhami,Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts. J. Appl. Polym. Sci., 2020, 137(37), 49087.
B. T. Challa,; S. K. Gummadi,; K. Elhattab,; J. Ahlstrom,; P. Sikder,In-house processing of 3D printable polyetheretherketone (PEEK) filaments and the effect of fused deposition modeling parameters on 3D-printed PEEK structures. Int. J. Adv. Manuf. Technol., 2022, 121(3), 1675–1688.
C. P. Jiang,; Y. C. Cheng,; H. W. Lin,; Y. Chang,; T. Pasang,; S. Y. Lee,Optimization of FDM 3D printing parameters for high strength PEEK using the Taguchi method and experimental validation. Rapid Prototyp. J., 2022, 28(7), 1260–1271.
P. Wang,; A. G. Pan,; L. Xia,; Y. T. Cao,; H. J. Zhang,; W. C. Wu,Effect of process parameters of fused deposition modeling on mechanical properties of poly-ether-ether-ketone and carbon fiber/poly-ether-ether-ketone. High Perform. Polym., 2022, 34(3), 337–351.
W. Z. Wu,; P. Geng,; G. W. Li,; D. Zhao,; H. B. Zhang,; J. Zhao,Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials, 2015, 8(9), 5834–5846.
M. F. Arif,; S. Kumar,; K. M. Varadarajan,; W. J. Cantwell,Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater. Des., 2018, 146, 249–259.
Y. He,; M. Shen,; Q. H. Wang,; T. M. Wang,; X. Q. Pei,Effects of FDM parameters and annealing on the mechanical and tribological properties of PEEK. Compos. Struct., 2023, 313, 116901.
M. Carrola,; H. Fallahi,; H. Koerner,; L. M. Pérez,; A. Asadi,Fundamentals of crystalline evolution and properties of carbon nanotube-reinforced polyether ether ketone nanocomposites in fused filament fabrication. ACS Appl. Mater. Interfaces, 2023, 15(18), 22506–22523.
P. Wang,; B. Zou,; S. L. Ding,; L. Li,; C. Z. Huang,Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut., 2021, 34(9), 236–246.
B. Hu,; Z. H. Xing,; W. D. Wu,; X. J. Zhang,; H. M. Zhou,; C. Du,; B. Shan,Enhancing the mechanical properties of SCF/PEEK composites in FDM via process-parameter optimization. High Perform. Polym., 2021, 33(8), 914–923.
0
Views
88
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution