浏览全部资源
扫码关注微信
1..北京科技大学化学与生物工程学院,北京 100083
2..中国科学院电工研究所微纳加工技术与智能电气设备研究部,北京 100190
3..中国科学院大学工程科学学院,北京 100049
Published:20 July 2024,
Received:22 September 2023,
Accepted:05 February 2024
扫 描 看 全 文
刘芾源, 佟辉, 曹诗沫, 臧丽坤. 分子半导体改性聚合物复合电介质研究进展. 高分子通报, 2024, 37(7), 868–877
Liu, F. Y.; Tong, H.; Cao, S. M.; Zang, L. K. Progress on polymer-matrix molecular semiconductor dielectric composites. Polym. Bull. (in Chinese), 2024, 37(7), 868–877
刘芾源, 佟辉, 曹诗沫, 臧丽坤. 分子半导体改性聚合物复合电介质研究进展. 高分子通报, 2024, 37(7), 868–877 DOI: 10.14028/j.cnki.1003-3726.2024.23.320.
Liu, F. Y.; Tong, H.; Cao, S. M.; Zang, L. K. Progress on polymer-matrix molecular semiconductor dielectric composites. Polym. Bull. (in Chinese), 2024, 37(7), 868–877 DOI: 10.14028/j.cnki.1003-3726.2024.23.320.
有机小分子半导体聚合物分子半导体复合电介质泄漏电流高温储能
Organic small molecular semiconductorPolymer molecular semiconductorsComposite dielectricLeakage currentHigh temperature energy storage
郑明胜, 钟少龙, 裴家耀, 党智敏. 改性聚丙烯薄膜电容器制备工艺和性能研究. 绝缘材料, 2022, 55(10), 1–5.
赖五福. 薄膜电容器在新能源汽车上的运用. 电子世界, 2012, (15), 123–125.
刘光辉, 佟辉, 徐菊, 范涛. 新能源汽车用直流母线电容器关键功能材料研究进展. 电工电能新技术, 2019, 38(3), 63–73.
Wu, S.; Li, W. P.; Lin, M. R.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q. M.Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater., 2013, 25(12), 1734–1738.
Chen, Q.; Shen, Y.; Zhang, S. H.; Zhang, Q. M.Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res., 2015, 45, 433–458.
Yao, Z. H.; Song, Z.; Hao, H.; Yu, Z. Y.; Cao, M. H.; Zhang, S. J.; Lanagan, M. T.; Liu, H. X.Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater., 2017, 29(20), 1601727.
王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料. 化学进展, 2023, 35(1), 168–176.
张天栋, 杨连印, 张昌海, 迟庆国. 聚合物基复合薄膜的高温储能性能研究进展. 中国电机工程学报, 2021, 41(5), 1526–1540.
张博钊, 刘志英. 聚合物基电介质薄膜电容器研究进展. 工程塑料应用, 2023, 51(7), 171–174.
张昌海, 闫炜东, 张统钦, 张天栋, 迟庆国, 刘献礼. 掺杂改性PMMA/PVDF共混聚合物基复合介质的储能性能提升. 复合材料学报, 2023, 40(7), 3950–3963.
Li, H.; Zhou, Y.; Liu, Y.; Li, L.; Liu, Y.; Wang, Q.Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev., 2021, 50(11), 6369–6400.
李琦, 李曼茜. 高温聚合物薄膜电容器介电材料评述与展望. 高电压技术, 2021, 47(9), 3105–3123.
Tan, D.; Zhang, L. L.; Chen, Q.; Irwin, P.High-temperature capacitor polymer films. J. Electron. Mater., 2014, 43(12), 4569–4575.
Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. Y.; Iagodkine, E.; Haque, A. M.; Chen, L. Q.; Jackson, T.; Wang, Q.Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523(7562), 576–579.
Azizi, A.; Gadinski, M. R.; Li, Q.; Abu AlSaud, M.; Wang, J. J.; Wang, Y.; Wang, B.; Liu, F. H.; Chen, L. Q.; Alem, N.; Wang, Q.High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater., 2017, 29(35)1701864.
Cheng, S.; Zhou, Y.; Li, Y. S.; Yuan, C.; Yang, M. C.; Fu, J.; Hu, J.; He, J. L.; Li, Q.Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater., 2021, 42, 445–453.
Li, H.; Gadinski, M. R.; Huang, Y. Q.; Ren, L. L.; Zhou, Y.; Ai, D.; Han, Z. B.; Yao, B.; Wang, Q.Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci., 2020, 13(4), 1279–1286.
Wen, F.; Zhang, L.; Wang, P.; Li, L. L.; Chen, J. G.; Chen, C.; Wu, W.; Wang, G. F.; Zhang, S. J.A high-temperature dielectric polymer poly(acrylonitrile butadiene styrene) with enhanced energy density and efficiency due to a cyano group. J. Mater. Chem. A, 2020, 8(30), 15122–15129.
Yang, M. Z.; Yuan, F.; Shi, W. X.; Ren, W. B.; Guo, M. F.; Ouyang, C.; Zhou, L.; Sun, N. N.; Xiao, Y.; Xu, E. X.; Zhang, X. H.; Wei, Y.; Deng, X. L.; Nan, C. W.; Wang, X.; Shen, Y.Sub-nanowires boost superior capacitive energy storage performance of polymer composites at high temperatures. Adv. Funct. Mater., 2023, 33(12), 2214100.
Xu, W. H.; Yang, G.; Jin, L.; Liu, J.; Zhang, Y. H.; Zhang, Z. C.; Jiang, Z. H.High-k polymer nano-composites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS Appl. Mater. Interfaces, 2018, 10(13), 11233–11241.
李腾飞, 占肖卫. 有机光伏研究进展. 化学学报, 2021, 79(3), 257–283.
崔超华. 有机光伏材料的分子设计与器件性能研究. 高分子学报, 2021, 52(6), 663–678.
郭姿含, 胡竹斌, 孙真荣, 孙海涛. 有机半导体的电子电离能、亲和势和极化能的密度泛函理论研究. 物理化学学报, 2017, 33(6), 1171–1180.
Kahn, A.Fermi level, work function and vacuum level. Mater. Horiz., 2016, 3(1), 7–10.
卢鹏荐, 王一龙, 孙志刚, 官建国. 高介电常数、低介电损耗的聚合物基复合材料. 化学进展, 2010, 22(8), 1619–1625.
李骁骏, 李永舫. 共轭聚合物和共轭有机分子电子能级的测量. 高分子学报, 2022, 53(8), 995–1004.
汪润生, 孟卫民, 彭应全, 马朝柱, 李荣华, 谢宏伟, 王颖, 赵明, 袁建挺. 有机半导体的物理掺杂理论. 物理学报, 2009, 58(11), 7897–7903.
李善武, 朱陈宇杰, 罗尹豪, 张亚茹, 滕汉明, 王宗瑞, 甄永刚. 酰胺与酰亚胺类n型有机半导体材料的研究进展. 化学学报, 2022, 80(12), 1600–1617.
Dang, B.; Hu, J.; Zhou, Y.; He, J. L.Remarkably improved electrical insulating performances of lightweight polypropylene nanocomposites with fullerene. J. Phys. D, Appl. Phys., 2017, 50(45), 455303.
Yuan, C.; Zhou, Y.; Zhu, Y. J.; Liang, J. J.; Wang, S. J.; Peng, S. M.; Li, Y. S.; Cheng, S.; Yang, M. C.; Hu, J.; Zhang, B.; Zeng, R.; He, J. L.; Li, Q.Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun., 2020, 11(1), 3919.
Zhang, C. H.; Zhang, T. Q.; Feng, M. J.; Cui, Y.; Zhang, T. D.; Zhang, Y. Q.; Feng, Y.; Zhang, Y.; Chi, Q. G.; Liu, X. L.Significantly improved energy storage performance of PVDF ferroelectric films by blending PMMA and filling PCBM. ACS Sustain. Chem. Eng., 2021, 9(48), 16291–16303.
Ren, W. B.; Yang, M. Z.; Zhou, L.; Fan, Y. J.; He, S.; Pan, J. Y.; Tang, T. X.; Xiao, Y.; Nan, C. W.; Shen, Y.Scalable ultrathin all-organic polymer dielectric films for high-temperature capacitive energy storage. Adv. Mater., 2022, 34(47), e2207421.
Feng, M. J.; Feng, Y.; Zhang, C. H.; Zhang, T. D.; Tong, X.; Gao, Q.; Chen, Q. G.; Chi, Q. G.Enhanced high-temperature energy storage performance of all-organic composite dielectric via constructing fiber-reinforced structure. Energy Environ. Mater., 2023, 12571.
Zhang, B.; Chen, X. M.; Pan, Z.; Liu, P.; Mao, M. M.; Song, K. X.; Mao, Z.; Sun, R.; Wang, D. W.; Zhang, S. J.Superior high-temperature energy density in molecular semiconductor/polymer all-organic composites. Adv. Funct. Mater., 2023, 33(5), 2210050.
Zhang, L. J.; Liu, J.; Luo, L. B.; Liu, X. Y.; Wang, X.All-organic polyimide/Cl-HBC composite film with high breakdown strength and ultra-low dielectric loss. Polymer, 2022, 245, 124702.
Zhou, Y.; Zhu, Y. J.; Xu, W. H.; Wang, Q.Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 ℃. Adv. Energy Mater., 2023, 13(11), 2203961.
Feng, M. J.; Feng, Y.; Zhang, C. H.; Zhang, T. D.; Chen, Q. G.; Chi, Q. G.Ultrahigh energy storage performance of all-organic dielectrics at high-temperature by tuning the density and location of traps. Mater. Horiz., 2022, 9(12), 3002–3012.
Qiao, R.; Xu, H. R.; Chen, S. N.; Chen, S.; Luo, H.; Zhang, D.N-type semiconductive polymer and poly(vinylidene fluoride-trifluoroethylene-chlorotri-fluoroethylene) blends for energy storage applications. ACS Appl. Polym. Mater., 2021, 3(2), 879–887.
Qiao, R.; Wang, C.; Chen, S.; He, G. H.; Liu, Z. J.; Luo, H.; Zhang, D.High-temperature dielectric polymers with high breakdown strength and energy density via constructing the electron traps in blends. Compos. Part A Appl. Sci. Manuf., 2022, 152, 106679.
Liu, D. N.; Wang, J. W.; Peng, W. H.; Wang, H. Q.; Ren, H.An organic dielectric filler polyethylene glycol-polyaniline block copolymer with low-density used in PVDF-based composites. Compos. Sci. Technol., 2022, 221, 109300.
0
Views
65
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution