浏览全部资源
扫码关注微信
北京康美特科技股份有限公司,北京 100094;上海理工大学材料与化学学院,上海 200093
Published:2024-06,
Received:10 October 2023,
Accepted:01 December 2023
扫 描 看 全 文
徐建军. 超高分子量聚乙烯纤维的工业化制备和构效关系综述. 高分子通报, 2024, 37(6), 776–791
Xu, J. J. A review on industrial preparation and structure-property relationships of ultra high molecular weight polyethylene fiber. Polym. Bull. (in Chinese), 2024, 37(6), 776–791
徐建军. 超高分子量聚乙烯纤维的工业化制备和构效关系综述. 高分子通报, 2024, 37(6), 776–791 DOI: 10.14028/j.cnki.1003-3726.2024.23.337.
Xu, J. J. A review on industrial preparation and structure-property relationships of ultra high molecular weight polyethylene fiber. Polym. Bull. (in Chinese), 2024, 37(6), 776–791 DOI: 10.14028/j.cnki.1003-3726.2024.23.337.
超高分子量聚乙烯纤维冻胶纺丝微观结构伸直链晶体力学性能
Ultra-high molecular weight polyethylene fiberGel spinningMicrostructureChain-extended crystalMechanical properties
Van Krevelen, D. W.4th ed (Revised by Nijenhuis, K. Te.). Properties of Polymers—Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Amsterdam: Elsevier, 2009.
Smith, P.; Lemstra, P. J.Filamenten met grote treksterkte en modulus en werkwijze ter vervaardiging daarvan. Dutch patent, NL7904990A. 1979-06-27.
Pennings, A. J.; Kiel, A. M.Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution. Kolloid Z. Und Z. Für Polym., 1965, 205(2), 160–162.
Pennings, A. J.Fractionation of polymers by crystallization from solutions. II. J. Polym. Sci., C Polym. Symp., 1967, 16(3), 1799–1812.
Zwijnenburg, A.; Pennings, A. J.Longitudinal growth of polymer crystals from flowing solutions III. Polyethylene crystals in Couette flow. Colloid Polym. Sci., 1976, 254(10), 868–881.
Smith, P.; Lemstra, P. J.; Kalb, B.; Pennings, A. J.Ultrahigh-strength polyethylene filaments by solution spinning and hot drawing. Polym. Bull., 1979, 1(11), 733–736.
Pennings, A. J.; Zwijnenburg, A.Longitudinal growth of polymer crystals from flowing solutions. VI. Melting behavior of continuous fibrillar polyethylene crystals. J. Polym. Sci. Polym. Phys. Ed., 1979, 17(6), 1011–1032.
Pennings, A. J.; Smook, J.Mechanical properties of ultra-high molecular weight polyethylene fibres in relation to structural changes and chain scissioning upon spinning and hot-drawing. J. Mater. Sci., 1984, 19(10), 3443–3450.
Smook, J.; Hamersma, W.; Pennings, A. J.The fracture process of ultra-high strength polyethylene fibres. J. Mater. Sci., 1984, 19(4), 1359–1373.
Smith, P.; Lemstra, P. J.Ultra-high-strength polyethylene filaments by solution spinning/drawing. J. Mater. Sci., 1980, 15(2), 505–514.
Smith, P.; Lemstra, P. J.; Booij, H. C.Ultradrawing of high-molecular-weight polyethylene cast from solution. II. Influence of initial polymer concentration. J. Polym. Sci. Polym. Phys. Ed., 1981, 19(5), 877–888.
Lemstra, P. J.; Bastiaansen, C. W. M.; Meijer, H. E. H.Chain-extended flexible polymers. Angew. Makromol. Chem., 1986, 145(1), 343–358.
Van Aerle, N. A. J. M.; Lemstra, P. J.Chain-extended polyethylene in composites—melting and relaxation behaviour. Polym. J., 1988, 20(2), 131–141.
Gerrits, N. J. A.; Lemstra, P. J.Porous biaxially drawn ultra-high molecular weight polyethylene films. Polymer, 1991, 32(10), 1770–1775.
Capaccio, G.; Ward, I. M.Properties of ultra-high modulus linear polyethylenes. Nat. Phys. Sci., 1973, 243, 143.
Capaccio, G.; Ward, I. M.Preparation of ultra-high modulus linear polyethylenes; effect of molecular weight and molecular weight distribution on drawing behaviour and mechanical properties. Polymer, 1974, 15(4), 233–238.
Capaccio, G.; Ward, I. M.Effect of molecular weight on the morphology and drawing behaviour of melt crystallized linear polyethylene. Polymer, 1975, 16(4), 239–243.
Capaccio, G.; Gibson, A. G.; Ward, I. M.Ultra-High Modulus Polymers. A. Ciferri and I. M. Ward, eds., London: Applied Science Publ, 1979, p.1.
Capaccio, G.; Ward, I. M.Ultra-high-modulus linear polyethylene through controlled molecular weight and drawing. Polym. Eng. Sci., 1975, 15(3), 219–224.
Amornsakchai, T.; Cansfield, D. L. M.; Jawad, S. A.; Pollard, G.; Ward, I. M.The relation between filament diameter and fracture strength for ultra-high-modulus polyethylene fibres. J. Mater. Sci., 1993, 28(6), 1689–1698.
Ward, I. M.; Wilding, M. A.Creep behavior of ultrahigh-modulus polyethylene: influence of draw ratio and polymer composition. J. Polym. Sci. B Polym. Phys., 1984, 22(4), 561–575.
Barham, P. J.; Keller, A.A study on the achievement of high-modulus polyethylene fibres by drawing. J. Mater. Sci., 1976, 11(1), 27–35.
Keller, A.A current account of chain extension, fibrous crystallization, and fiber formation. J. Polym. Sci., C Polym. Symp., 1977, 58(1), 395–422.
Grubb, D. T.; Keller, A.Thermal contraction and extension in fibrous crystals of polyethylene. Colloid Polym. Sci., 1978, 256(3), 218–233.
Odell, J. A.; Grubb, D. T.; Keller, A.A new route to high modulus polyethylene by lamellar structures nucleated onto fibrous substrates with general implications for crystallization behaviour. Polymer, 1978, 19(6), 617–626.
Barham, P. J.; Keller, A.Some observations on the production of polyethylene fibres by the surface growth method. J. Mater. Sci., 1980, 15(9), 2229–2235.
Barham, P. J.; Keller, A.High-strength polyethylene fibres from solution and gel spinning. J. Mater. Sci., 1985, 20(7), 2281–2302.
Southern, J. H.; Porter, R. S.The properties of poly-ethylene crystallized under the orientation and pressure effects of a pressure capillary viscometer. J. Appl. Polym. Sci., 1970, 14(9), 2305–2317.
Kojima, S.; Porter, R. S.Influence of extrusion ratio on the tensile properties of ultradrawn polyethylene. J. Polym. Sci. B Polym. Phys., 1978, 16(10), 1729–1737.
Kanamoto, T.; Sherman, E. S.; Porter, R. S.Extrusion of polyethylene single crystals. Polym. J., 1979, 11(6), 497–502.
Zachariades, A. E.; Mead, W. T.; Porter, R. S.Recent developments in ultraorientation of polyethylene by solid-state extrusion. Chem. Rev., 1980, 80(4), 351–364.
Wang, L. H.; Porter, R. S.; Stidham, H. D.; Hsu, S. L.Raman spectroscopic characterization of the morphology of polyethylene reactor powder. Macromolecules, 1991, 24(20), 5535–5538.
Porter, R. S.; Kanamoto, T.; Zachariades, A. E.Property opportunities with polyolefins: a review. Preparations and applications of high stiffness and strength by uniaxial draw. Polymer, 1994, 35(23), 4979–4984.
Arakawa, T.; Wunderlich, B.Thermodynamic properties of extended chain polymethylene single crystals. J. Polym. Sci. C Polym. Symp., 1967, 16(2), 653–658.
Fu, Y. G.; Chen, W.; Pyda, M.; Londono, D.; Annis, B.; Boller, A.; Habenschuss, A.; Cheng, J. L.; Wunderlich, B.Structure-property analysis for gel-spun, ultrahigh molecular mass polyethylene fibers. J. Macromol. Sci. Part B, 1996, 35(1), 37–87.
Hu, W. B.; Buzin, A.; Lin, J. S.; Wunderlich, B.Annealing behavior of gel-spun polyethylene fibers at temperatures lower than needed for significant shrinkage. J. Polym. Sci. Part B Polym. Phys., 2003, 41(4), 403–417.
Mutter, R.; Stille, W.; Strobl, G.Transition regions and surface melting in partially crystalline polyethylene: a Raman spectroscopic study. J. Polym. Sci. B Polym. Phys., 1993, 31(1), 99–105.
赵莹, 王笃金, 于俊荣. 超高分子量聚乙烯纤维. 北京: 国防工业出版社, 2018.
Wang, J.; Smith, K. J.The breaking strength of ultra-high molecular weight polyethylene fibers. Polymer, 1999, 40(26), 7261–7274.
Ohta, Y.; Murase, H.; Hashimoto, T.Structural development of ultra-high strength polyethylene fibers: Transformation from kebabs to shishs through hot-drawing process of gel-spun fibers. J. Polym. Sci. B Polym. Phys., 2010, 48(17), 1861–1872.
Murase, H.; Ohta, Y.; Hashimoto, T.A new scenario of shish-kebab formation from homogeneous solutions of entangled polymers: visualization of structure evolution along the fiber spinning line. Macromolecules, 2011, 44(18), 7335–7350.
Van Aerle, N. A. J. M.; Braam, A. W. M.A structural study on solid state drawing of solution-crystallized ultra-high molecular weight polyethylene. J. Mater. Sci., 1988, 23(12), 4429–4436.
Zhu, B. W.; Liu, J.; Wang, T. Y.; Han, M.; Valloppilly, S.; Xu, S.; Wang, X. W.Novel polyethylene fibers of very high thermal conductivity enabled by amorphous restructuring. ACS Omega, 2017, 2(7), 3931–3944.
Babiker, D. M. D.; Wan, C. X.; Mansoor, B.; Usha, Z. R.; Yu, R.; Habumugisha, J. C.; Chen, W.; Chen, X.; Li, L. B.Superior lithium battery separator with extraordinary electrochemical performance and thermal stability based on hybrid UHMWPE/SiO2 nanocomposites via the scalable biaxial stretching process. Compos. Part B Eng., 2021, 211, 108658.
Babiker, D. M. D.; Yu, R.; Usha, Z. R.; Chen, W.; Chen, X.; Li, L.High performance ultra-high molecular weight polyethylene nanocomposite separators with excellent rate capabilities designed for next-generation lithium-ion batteries. Mater. Today Phys., 2022, 23, 100626.
Du, J. G.; Wang, Z.; Yu, J. L.; Ullah, S.; Yang, B.; Li, C. H.; Zhao, N.; Fei, B.; Zhu, C. Z.; Xu, J.Ultrahigh-strength ultrahigh molecular weight polyethylene (UHMWPE)-based fiber electrode for high performance flexible supercapacitors. Adv. Funct. Mater., 2018, 28(20), 1707351.
Cui, K. P.; Ma, Z.; Tian, N.; Su, F. M.; Liu, D.; Li, L. B.Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev., 2018, 118(4), 1840–1886.
Deng, B.; Chen, L.; Zhong, Y. S.; Li, X. K.; Wang, Z. B.The effect of temperature on the structural evolution of ultra-high molecular weight polyethylene films with pre-reserved shish crystals during the stretching process. Polymer, 2023, 267, 125690.
Deng, B.; Chen, L.; Li, X. K.; Wang, Z. B.Influence of prereserved shish crystals on the structural evolution of ultrahigh-molecular weight polyethylene films during the hot stretching process. Macromolecules, 2022, 55(11), 4600–4613.
An, M. F.; Lv, Y.; Yao, G. B.; Zhang, L.; Wang, Z. B.Structural transformation from shish-kebab crystals to micro-fibrils through hot stretching process of gel-spun ultra-high molecular weight polyethylene fibers with high concentration solution. J. Polym. Sci. B Polym. Phys., 2018, 56(3), 225–238.
Wang, Z. B.; An, M. F.; Xu, H. J.; Lv, Y.; Tian, F.; Gu, Q.Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer, 2017, 120, 244–254.
An, M. F.; Lv, Y.; Xu, H. J.; Gu, Q.; Wang, Z. B.Structure and properties of gel-spun ultra-high molecular weight polyethylene fibers with high gel solution concentration. Chinese J. Polym. Sci., 2017, 35(4), 524–533.
An, M. F.; Lv, Y.; Xu, H. J.; Wang, B. J.; Wang, Y. X.; Gu, Q.; Wang, Z. B.Effect of gel solution concentration on the structure and properties of gel-spun ultrahigh molecular weight polyethylene fibers. Ind. Eng. Chem. Res., 2016, 55(30), 8357–8363.
Zhang, B.; Chen, J. B.; Freyberg, P.; Reiter, R.; Mülhaupt, R.; Xu, J.; Reiter, G.High-temperature stability of dewetting-induced thin polyethylene filaments. Macromolecules, 2015, 48(5), 1518–1523.
Tian, Y.; Zhu, C. Z.; Gong, J. H.; Ma, J. H.; Xu, J.Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers: in situ small and wide angle X-ray scattering studies. Eur. Polym. J., 2015, 73, 127–136.
Tian, Y.; Zhu, C. Z.; Gong, J. H.; Yang, S. L.; Ma, J. H.; Xu, J.Lamellae break induced formation of shish-kebab during hot stretching of ultra-high molecular weight polyethylene precursor fibers investigated by in situ small angle X-ray scattering. Polymer, 2014, 55(16), 4299–4306.
Wang, X. J.; Ho, V.; Segalman, R. A.; Cahill, D. G.Thermal conductivity of high-modulus polymer fibers. Macromolecules, 2013, 46(12), 4937–4943.
Schmidt-Rohr, K.; Spiess, H. W.Chain diffusion between crystalline and amorphous regions in polyethylene detected by 2D exchange 13C-NMR. Macromolecules, 1991, 24(19), 5288–5293.
Bassett, D. C.Chain-extended polyethylene in context: a review. Polymer, 1976, 17(6), 460–470.
Strobl, G.The Physics of Polymers,3rd ed. Berlin Heidelberg: Springer-Verlag, 2007, 14–67.
Warner, S. B.Ultrahigh draw ratios in polyethylene: molecular weight effects. J. Polym. Sci. Polym. Phys. Ed., 1978, 16(12), 2139–2145.
Graessley, W. W.The entanglement concept in polymer rheology. Adv. Polym. Sci., 1974, 16, 1–179.
Porter, R. S.; Johnson, J. F.The entanglement concept in polymer systems. Chem. Rev., 1966, 66(1), 1–27.
Treloar, L. R. G.The Physics of Rubber Elasticity,3rd ed. Clarendon: Oxford, 1975.
McCrum, N. G.; Read, B. E.; Williams, G.Anelastic and Dielectric Effects in Polymeric Solids. New York: Wiley, 1967.
Cembrola, R. J.; Stein, R. S.Crystal orientation relaxation studies of polyethylene. J. Polym. Sci. Polym. Phys. Ed., 1980, 18(5), 1065–1085.
Bastiaansen, C. W. M.Influence of initial polymer concentration in solution and weight-average molecular weight on the drawing behavior of polyethylenes. J. Polym. Sci. Part B Polym. Phys., 1990, 28(9), 1475–1482.
Ishikawa, K.; Miyasaka, K.; Maeda, M.Drawing of single-crystal mats of linear polyethylene. J. Polym. Sci. B Polym. Phys., 1969, 7(12), 2029–2041.
Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G.Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macro-molecules, 1999, 32(13), 4390–4403.
Men, Y. F.; Rieger, J.; Strobl, G.Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett., 2003, 91(9), 095502.
Peterlin, A.Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci., 1971, 6(6), 490–508.
Kavesh, S.; Prevorsek, D. C.High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore. US patent, US 4413110-A, 1983-11-01.
张安秋, 杨屏玉, 鲁平, 杨年慈, 吴宗铨. 聚乙烯冻胶丝的结构和性能. 纺织特品技术, 1986, 4(1), 1–5.
杨年慈. 超高分子量聚乙烯纤维:第五讲 UHMWPE冻胶原丝的超拉伸. 合成纤维工业, 1991, 14(6), 47–53.
陈自力, 刘兆峰, 诸静, 胡祖明. 聚乙烯冻胶丝萃取超拉伸的研究. 中国纺织大学学报, 1993, 19(6), 68–74.
陈成泗. 高强高模聚乙烯纤维的生产工艺. 中国, ZL99111581.3, 1999-08-19.
Griffith, A. A. VI.The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London Ser. A, 1921, 221(582-593), 163–198.
Ohta, Y.; Murase, H.; Hashimoto, T.Effects of spinning conditions on the mechanical properties of ultrahigh-molecular-weight polyethylene fibers. J. Polym. Sci. Part B Polym. Phys., 2005, 43(19), 2639–2652.
Sawai, D.; Nagai, K.; Kubota, M.; Ohama, T.; Kanamoto, T.Maximum tensile properties of oriented polyethylene, achieved by uniaxial drawing of solution-grown crystal mats: effects of molecular weight and molecular weight distribution. J. Polym. Sci. Part B Polym. Phys., 2006, 44(1), 153–161.
Armstrong, R.; Codd, I.; Douthwaite, R. M.; Petch, N. J.The plastic deformation of polycrystalline aggregates. Philos. Mag., 1962, 7(73), 45–58.
Blackadder, D. A.; Schleinitz, H. M.Effect of ultrasonic radiation on the crystallization of polyethylene from dilute solution. Nature, 1963, 200, 778–779.
Liu, Q.; Gao, H. H.; Zha, L. Y.; Hu, Z. M.; Ma, Y.; Yu, M. H.; Chen, L.; Hu, W. B.Tuning bio-inspired skin-core structure of nascent fiber via interplay of polymer phase transitions. Phys. Chem. Chem. Phys., 2014, 16(29), 15152–15157.
Grubb, D. T.A structural model for high-modulus polyethylene derived from entanglement concepts. J. Polym. Sci. Polym. Phys. Ed., 1983, 21(2), 165–188.
Ruland, W.Small-angle scattering studies on carbonized cellulose fibers. J. Polym. Sci., C Polym. Symp., 1969, 28(1), 143–151.
Keum, J. K.; Zuo, F.; Hsiao, B. S.Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules, 2008, 41(13), 4766–4776.
Grubb, D. T.; Prasad, K.High-modulus polyethylene fiber structure as shown by X-ray diffraction. Macromolecules, 1992, 25(18), 4575–4582.
Windle, A. H.Wide angle X-ray diffraction study of the microstructure of chain-folded polyethylene crystals. J. Mater. Sci., 1975, 10(2), 252–268.
Wunderlich, B.Macromolecular Physics. Vol. 3 Crystal Melting. New York: Academic Press, 1980.
Fischer, L.; Haschberger, R.; Ziegeldorf, A.; Ruland, W.Structure and properties of ultra-high modulus polyethylene. Colloid Polym. Sci., 1982, 260(2), 174–181.
Wagner, H. D.Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. B Polym. Phys., 1989, 27(1), 115–149.
Litvinov, V. M.; Xu. J.; Melian, C.; Demco, D. E.; Möller, M.; Simmelink. J.Morphology, chain dynamics and domain sizes in highly drawn gel-spun ultra-high molecular weight polyethylene fibers at the final stages of drawing by SAXS, WAXS and 1H solid-state NMR. Macromolecules, 2011, 44(23), 9254–9266.
Swan, P. R.Polyethylene unit cell variations with branching. J. Polym. Sci., 1962, 56(164), 409–416.
Ohta, Y.; Sugiyama, H.; Yasuda, H.Short branch effects on the creep properties of the ultra-high strength polyethylene fibers. J. Polym. Sci. Part B Polym. Phys., 1994, 32(2), 261–269.
Gijsman, P.; Smelt, H. J.; Schumann, D.Hindered amine light stabilizers: an alternative for radiation cross-linked UHMWPE implants. Biomaterials, 2010, 31(26), 6685–6691.
Jacobs, M.Creep of gel-spun polyethylene fibres: improvements by impregnation and crosslinking. Doctoral Dissertation of TU Eindhoven, 1999.
Wong, W. F.; Young, R. J.Molecular deformation processes in gel-spun polyethylene fibres. J. Mater. Sci., 1994, 29(2), 520–526.
Moonen, J. A. H. M.; Roovers, W. A. C.; Meier, R. J.; Kip, B. J.Crystal and molecular deformation in strained high-performance polyethylene fibers studied by wide-angle X-ray scattering and Raman spectroscopy. J. Polym. Sci. B Polym. Phys., 1992, 30(4), 361–372.
Murase, H.; Ohta, Y.; Hashimoto, T.Shear-induced phase separation and crystallization in semidilute solution of ultrahigh molecular weight polyethylene: phase diagram in the parameter space of temperature and shear rate. Polymer, 2009, 50(19), 4727–4736.
Muthukumar, M.Shifting paradigms in polymer crystallization. Lect. Notes Phys., 2007, 714, 1–18.
Hu, W. B.Intramolecular crystal nucleation. Lect. Notes Phys., 2007, 714, 47–63.
Bunn, C. W.The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the >CH2 group. Trans. Faraday Soc., 1939, 35, 482–491.
Seto, T.; Hara, T.; Tanaka, K.Phase transformation and deformation processes in oriented polyethylene. Jpn. J. Appl. Phys., 1968, 7(1), 31.
Bassett, D. C.; Turner, B.New high-pressure phase in chain-extended crystallization of polythene. Nat. Phys. Sci., 1972, 240, 146–148.
Yasuniwa, M.; Nakafuku, C.; Takemura, T.Melting and crystallization process of polyethylene under high pressure. Polym. J., 1973, 4(5), 526–533.
Bassett, D. C.; Block, S.; Piermarini, G. J.A high-pressure phase of polyethylene and chain-extended growth. J. Appl. Phys., 1974, 45(10), 4146–4150.
Takahashi, Y.; Ishida, T.; Furusaka, M.Monoclinic-to-orthorhombic transformation in polyethylene. J. Polym. Sci. Part B Polym. Phys., 1988, 26(11), 2267–2277.
Tsubakihara, S.; Nakamura, A.; Yasuniwa, M.Hexagonal phase of polyethylene fibers under high pressure. Polym. J., 1991, 23(11), 1317–1324.
Ohta, Y.; Kaji, A.; Sugiyama, H.; Yasuda, H.Structural analysis during creep process of ultrahigh-strength polyethylene fiber. J. Appl. Polym. Sci., 2001, 81(2), 312–320.
Furuhata, K.; Yokokawa, T.; Seoul, C.; Miyasaka, K.Drawing of ultrahigh-molecular-weight polyethylene single-crystal mats: the crystallinity. J. Polym. Sci. Part B Polym. Phys., 1986, 24(1), 59–67.
Stein, R. S.; Norris, F. H.The X-ray diffraction, birefringence, and infrared dichroism of stretched polyethylene. J. Polym. Sci., 1956, 21(99), 381–396.
Alexander, L. E.X-Ray Diffraction Methods in Polymer Science. New York: Wiley-Interscience, 1969.
莫志深, 张宏放. 晶态聚合物结构和X射线衍射. 北京: 科学出版社, 2003, 181–204.
Phoenix, S. L.; Porwal, P. K.A new membrane model for the ballistic impact response and V50 performance of multiply fibrous systems. Int. J. Solids Struct., 2003, 40(24), 6723–6765.
Henry, A.; Chen, G.High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett., 2008, 101(23), 235502.
Choy, C. L.; Wong, Y. W.; Yang, G. W.; Kanamoto, T.Elastic modulus and thermal conductivity of ultradrawn polyethylene. J. Polym. Sci. B Polym. Phys., 1999, 37(23), 3359–3367.
Rotzinger, B. P.; Chanzy, H. D.; Smith, P.High strength/high modulus polyethylene: synthesis and processing of ultra-high molecular weight virgin powders. Polymer, 1989, 30(10), 1814–1819.
Rastogi, S.; Yao, Y. F.; Ronca, S.; Bos, J.; van der Eem, J.Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route. Macromolecules, 2011, 44(14), 5558–5568.
0
Views
209
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution