浏览全部资源
扫码关注微信
武汉工程大学材料科学与工程学院,武汉 430205
Published:2024-06,
Received:27 October 2023,
Accepted:18 December 2023
扫 描 看 全 文
易江南, 田珮, 向玮琦, 王邦奎, 吴江渝, 曾小平, 王大威. 智能响应材料在生物医用领域的应用与进展. 高分子通报, 2024, 37(6), 725–741
Yi, J. N; Tian, P.; Xiang, W. Q.; Wang, B. K.; Wu, J. Y.; Zeng, X. P.; Wang, D. W. Smart responsive materials in biomedical applications and progress. Polym. Bull. (in Chinese), 2024, 37(6), 725–741
易江南, 田珮, 向玮琦, 王邦奎, 吴江渝, 曾小平, 王大威. 智能响应材料在生物医用领域的应用与进展. 高分子通报, 2024, 37(6), 725–741 DOI: 10.14028/j.cnki.1003-3726.2024.23.362.
Yi, J. N; Tian, P.; Xiang, W. Q.; Wang, B. K.; Wu, J. Y.; Zeng, X. P.; Wang, D. W. Smart responsive materials in biomedical applications and progress. Polym. Bull. (in Chinese), 2024, 37(6), 725–741 DOI: 10.14028/j.cnki.1003-3726.2024.23.362.
智能响应材料响应机理药物释放医用敷料靶向治疗
Smart responsive materialsResponse mechanismsDrug releaseMedical dressingsTargeted therapies
Adepu, S.; Ramakrishna, S.Controlled drug delivery systems: current status and future directions. Molecules, 2021, 26(19), 5905.
Pang, X.; Jiang, Y.; Xiao, Q. C.; Leung, A. W.; Hua, H. Y.; Xu, C. S.pH-Responsive polymer-drug conjugates: design and progress. J. Control. Release, 2016, 222, 116–129.
Kocak, G.; Tuncer, C.; Bütün, V.pH-Responsive polymers. Polym. Chem., 2017, 8(1), 144–176.
Weber, C.; Hoogenboom, R.; Schubert, U. S.Temperature responsive bio-compatible polymers based on poly-(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci., 2012, 37(5), 686–714.
Lavrador, P.; Esteves, M. R.; Gaspar, V. M.; Mano, J. F.Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater., 2021, 31(8), 2005941.
Wan Ibrahim, W. A.; Nodeh, H. R.; Aboul-Enein, H. Y.; Sanagi, M. M.Magnetic solid-phase extraction based on modified ferum oxides for enrichment, preconcentration, and isolation of pesticides and selected pollutants. Crit. Rev. Anal. Chem., 2015, 45(3), 270–287.
Tanna, S.; Joan Taylor, M.; Sahota, T. S.; Sawicka, K.Glucose-responsive UV polymerised dextran–concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery. Biomaterials, 2006, 27(8), 1586–1597.
Yu, J. C.; Zhang, Y. Q.; Yan, J. J.; Kahkoska, A. R.; Gu, Z.Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm., 2018, 544(2), 350–357.
Ma, Q.; Zhao, X.; Shi, A. H.; Wu, J. Z.Bioresponsive functional phenylboronic acid-based delivery system as an emerging platform for diabetic therapy. Int. J. Nanomed., 2021, 16, 297–314.
Mohanty, A. R.; Ravikumar, A.; Peppas, N. A.Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications. Regen. Biomater., 2022, 9, rbac056.
殷瑞雪. 基于刀豆蛋白-糖亲和力的葡萄糖响应性胰岛素递送载体. 北京: 北京化工大学, 2013.
Shen, D.; Yu, H. J.; Wang, L.; Khan, A.; Haq, F.; Chen, X.; Huang, Q.; Teng, L. S.Recent progress in design and preparation of glucose-responsive insulin delivery systems. J. Control. Release, 2020, 321, 236–258.
Yu, J. C.; Qian, C. G.; Zhang, Y. Q.; Cui, Z.; Zhu, Y.; Shen, Q. D.; Ligler, F. S.; Buse, J. B.; Gu, Z.Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett., 2017, 17(2), 733–739.
Elshaarani, T.; Yu, H. J.; Wang, L.; Zain-Ul-Abdin, Ullah, R. S.; Haroon, M.; Khan, R. U.; Fahad, S.; Khan, A.; Nazir, A.; Usman, M.; Naveed, K. U. R.Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J. Mater. Chem. B, 2018, 6(23), 3831–3854.
Bazban-Shotorbani, S.; Hasani-Sadrabadi, M. M.; Karkhaneh, A.; Serpooshan, V.; Jacob, K. I.; Moshaverinia, A.; Mahmoudi, M.Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J. Control. Release, 2017, 253, 46–63.
Gao, S. T.; Tang, G. S.; Hua, D. W.; Xiong, R. H.; Han, J. Q.; Jiang, S. H.; Zhang, Q. L.; Huang, C. B.Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B, 2019, 7(5), 709–729.
Kim, Y. J.; Matsunaga, Y. T.Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B, 2017, 5(23), 4307–4321.
Abdelmohsen, H. A. M.; Copeland, N. A.; Hardy, J. G.Light-responsive biomaterials for ocular drug delivery. Drug Deliv. Transl. Res., 2023, 13(8), 2159–2182.
Ma, X.; Tian, H.Stimuli-responsive supramolecular polymers in aqueous solution. Acc. Chem. Res., 2014, 47(7), 1971–1981.
Fomina, N.; Sankaranarayanan, J.; Almutairi, A.Photochemical mechanisms of light-triggered release from nanocarriers. Adv. Drug Deliv. Rev., 2012, 64(11), 1005–1020.
Habault, D.; Zhang, H. J.; Zhao, Y.Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev., 2013, 42(17), 7244–7256.
Rwei, A. Y.; Wang, W. P.; Kohane, D. S.Photoresponsive nanoparticles for drug delivery. Nano Today, 2015, 10(4), 451–467.
Liu, Z. Q.; Wang, K.; Peng, X.; Zhang, L. L.Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair. Eur. Polym. J., 2022, 166, 110979.
Qiao, Y. T.; Wan, J. Q.; Zhou, L. Q.; Ma, W.; Yang, Y. Y.; Luo, W. X.; Yu, Z. Q.; Wang, H. X.Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wires Nanomed. Nanobiotechnol., 2019, 11(1), e1527.
Zhu, L. J.; Tu, C. L.; Zhu, B. S.; Su, Y.; Pang, Y.; Yan, D. Y.; Wu, J. L.; Zhu, X. Y.Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazone for drug delivery. Polym. Chem., 2011, 2(8), 1761–1768.
Chiang, Y. T.; Lo, C. L.pH-Responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials, 2014, 35(20), 5414–5424.
Sun, B.; Jiang, X. J.; Zhang, S. C.; Zhang, J. C.; Li, Y. F.; You, Q. Z.; Long, Y. Z.Electrospun anisotropic architectures and porous structures for tissue engineering. J. Mater. Chem. B, 2015, 3(27), 5389–5410.
Kim, Y. J.; Ebara, M.; Aoyagi, T.Temperature-responsive electrospun nanofibers for ‘on-off’ switchable release of dextran. Sci. Technol. Adv. Mater., 2012, 13(6), 064203.
Liu, Z.; Wang, W.; Xie, R.; Ju, X. J.; Chu, L. Y.Stimuli-responsive smart gating membranes. Chem. Soc. Rev., 2016, 45(3), 460–475.
Zhang, L.; Liu, Z.; Liu, L. Y.; Pan, J. L.; Luo, F.; Yang, C.; Xie, R.; Ju, X. J.; Wang, W.; Chu, L. Y.Nanostructured thermoresponsive surfaces engineered via stable immobilization of smart nanogels with assistance of polydopamine. ACS Appl. Mater. Interfaces, 2018, 10(50), 44092–44101.
Wu, Y. L.; Yan, M.; Lu, J.; Wang, C.; Zhao, J.; Cui, J. Y.; Li, C. X.; Yan, Y. S.Facile bio-functionalized design of thermally responsive molecularly imprinted composite membrane for temperature-dependent recognition and separation applications. Chem. Eng. J., 2017, 309, 98–107.
Liu, Z. Y.; Liu, J. H.; Cui, X.; Wang, X.; Zhang, L. C.; Tang, P. F.Recent advances on magnetic sensitive hydrogels in tissue engineering. Front. Chem., 2020, 8, 124.
Wang, H.; Di, J.; Sun, Y. B.; Fu, J. P.; Wei, Z. Y.; Matsui, H.; del C Alonso, A.; Zhou, S. Q.Biocompatible PEG-chitosan@carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv. Funct. Mater., 2015, 25(34), 5537–5547.
Chen, X.; Liu, Z. N.; Parker, S. G.; Zhang, X. J.; Gooding, J. J.; Ru, Y. Y.; Liu, Y. H.; Zhou, Y. S.Light-induced hydrogel based on tumor-targeting mesoporous silica nanoparticles as a theranostic platform for sustained cancer treatment. ACS Appl. Mater. Interfaces, 2016, 8(25), 15857–15863.
Hu, C.; Long, L. Y.; Cao, J.; Zhang, S. M.; Wang, Y. B.Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J., 2021, 411, 128564.
Jia, Y.; Li, J. B.Molecular assembly of Schiff base interactions: construction and application. Chem. Rev., 2015, 115(3), 1597–1621.
Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y. N.Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater., 2009, 8(12), 935–939.
Maleki, A.; He, J. H.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B. L.Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano, 2021, 15(12), 18895–18930.
Xu, Z. J.; Liu, G. T.; Huang, J.; Wu, J.Novel glucose-responsive antioxidant hybrid hydrogel for enhanced diabetic wound repair. ACS Appl. Mater. Interfaces, 2022, 14(6), 7680–7689.
Zeng, Q. K.; Qi, X. L.; Shi, G. Y.; Zhang, M.; Haick, H.Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations. ACS Nano, 2022, 16(2), 1708–1733.
Dong, R. N.; Guo, B. L.Smart wound dressings for wound healing. Nano Today, 2021, 41, 101290.
Liang, Y. P.; Li, M.; Yang, Y. T.; Qiao, L. P.; Xu, H. R.; Guo, B. L.pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano, 2022, 16(2), 3194–3207.
Ma, M. S.; Zhong, Y. L.; Jiang, X. L.Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr. Polym., 2020, 236, 116096.
Yang, F.; Shi, K.; Hao, Y.; Jia, Y. P.; Liu, Q. Y.; Chen, Y.; Pan, M.; Yuan, L. P.; Yu, Y. Y.; Qian, Z. Y.Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioact. Mater., 2021, 6(10), 3036–3048.
Wang, C.; Ye, Y. Q.; Hochu, G. M.; Sadeghifar, H.; Gu, Z.Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett., 2016, 16(4), 2334–2340.
Ashrafizadeh, M.; Delfi, M.; Zarrabi, A.; Bigham, A.; Sharifi, E.; Rabiee, N.; Paiva-Santos, A. C.; Kumar, A. P.; Tan, S. C.; Hushmandi, K.; Ren, J.; Zare, E. N.; Makvandi, P.Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches. J. Control. Release, 2022, 351, 50–80.
Cheng, L. L.; Zhang, X. G.; Tang, J. J.; Lv, Q. J.; Liu, J.Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials, 2021, 275, 120964.
张攀, 吕福杰, 范治平, 程萍, 韩军. 刺激响应性水凝胶在肿瘤治疗中的研究进展. 高分子通报, 2023, 36(5), 551–563.
Liang, C. Y.; Song, J. Y.; Zhang, Y. G.; Guo, Y. P.; Deng, M. G.; Gao, W.; Zhang, J. M.Facile approach to prepare rGO@Fe3O4 microspheres for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. Nanoscale Res. Lett., 2020, 15(1), 86.
Liu, W.; Zhang, X. Y.; Zhou, L.; Shang, L.; Su, Z. Q.Reduced graphene oxide (rGO) hybridized hydrogel as a near-infrared (NIR)/pH dual-responsive platform for combined chemo-photothermal therapy. J. Colloid Interface Sci., 2019, 536, 160–170.
Cicha, I.; Priefer, R.; Severino, P.; Souto, E. B.; Jain, S.Biosensor-integrated drug delivery systems as new materials for biomedical applications. Biomolecules, 2022, 12(9), 1198.
Gandhi, A.; Paul, A.; Sen, S. O.; Sen, K. K.Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci., 2015, 10(2), 99–107.
Yu, C.; Li, L.; Hu, P.; Yang, Y.; Wei, W.; Deng, X.; Wang, L.; Tay, F. R.; Ma, J. Z.Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv. Sci., 2021, 8(14), 2100540.
Municoy, S.; , Antezana, P. E.; Galdopórpora, J. M.; Olivetti, C.; Mebert, A. M.; Foglia, M. L.; Tuttolomondo, M. V.; Alvarez, G. S.; Hardy, J. G.; Desimone, M. F.Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci., 2020, 21(13), 4724.
Chen, Z.; Liu, J.; Chen, Y. J.; Zheng, X.; Liu, H. Z.; Li, H.Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators. ACS Appl. Mater. Interfaces, 2021, 13(1), 1353–1366.
Wang, J.; Liu, L. G.; Jiao, W. Q.; Yang, H.; Liu, J.; Liu, D. H.Phenylboronic acid-conjugated chitosan nanoparticles for high loading and efficient delivery of curcumin. Carbohydr. Polym., 2021, 256, 117497.
Gumz, H.; Lai, T. H.; Voit, B.; Appelhans, D.Fine-tuning the pH response of polymersomes for mimicking and controlling the cell membrane functionality. Polym. Chem., 2017, 8(19), 2904–2908.
Bayat, F.; Pourmadadi, M.; Eshaghi, M. M.; Yazdian, F.; Rashedi, H.Improving release profile and anticancer activity of 5-fluorouracil for breast cancer therapy using a double drug delivery system: chitosan/agarose/γ-alumina nanocomposite@double emulsion. J. Clust. Sci., 2023, 34(5), 2565–2577.
Li, X.; Hetjens, L.; Wolter, N.; Li, H. L.; Shi, X. Y.; Pich, A.Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin. J. Adv. Res., 2023, 43, 87–96.
Zhang, W.; Jin, X.; Li, H.; Zhang, R. R.; Wu, C. W.Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr. Polym., 2018, 186, 82–90.
Ouyang, J.; Deng, Y. Y.; Chen, W. S.; Xu, Q. F.; Wang, L. Q.; Liu, Z. J.; Tang, F. Y.; Deng, L.; Liu, Y. N.Marriage of artificial catalase and black phosphorus nanosheets for reinforced photodynamic antitumor therapy. J. Mater. Chem. B, 2018, 6(14), 2057–2064.
Bardajee, G. R.; Hooshyar, Z.; Farsi, M.; Mobini, A.; Sang, G.Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release. Mater. Sci. Eng. C, 2017, 72, 558–565.
Iyisan, B.; Kluge, J.; Formanek, P.; Voit, B.; Appelhans, D.Multifunctional and dual-responsive polymersomes as robust nanocontainers: design, formation by sequential post-conjugations, and pH-controlled dug release.Chem. Mater., 2016, 28(5), 1513–1525.
Sun, B. B.; Chang, R.; Cao, S. P.; Yuan, C. Q.; Zhao, L. Y.; Yang, H. W.; Li, J. B.; Yan, X. H.; van Hest, J. C. M.Acid-activatable transmorphic peptide-based nanomaterials for photodynamic therapy. Angew. Chem. Int. Ed., 2020, 59(46), 20582–20588.
Song, N.; Zhou, Z. F.; Song, Y. Q.; Li, M. M.; Yu, X. N.; Hu, B. B.; Yu, Z. L.In situ oxidation-regulated self-assembly of peptides into transformable scaffolds for cascade therapy.Nano Today, 2021, 38, 101198.
Sun, S.; Liang, H. W.; Wang, H.; Zou, Q. M.Light-triggered self-assembly of peptide nanoparticles into nanofibers in living cells through molecular conformation changes and H-bond interactions. ACS Nano, 2022, 16(11), 18978–18989.
Wu, Q. J.; Zhu, X. C.; Xiao, X.; Wang, P.; Xiong, D. K.; Gong, C. Y.; Wang, Y. S.; Yang, L.; Wei, Y. Q.A novel vaccine delivery system: biodegradable nanoparticles in thermosensitive hydrogel. Growth Factors, 2011, 29(6), 290–297.
Hao, Y. W.; Liu, H. L.; Li, G. N.; Cui, H. J.; Jiang, L.; Wang, S. T.Photo and thermo dual-responsive copolymer surfaces for efficient cell capture and release. ChemPhysChem, 2018, 19(16), 2107–2112.
Kim, S.; Traore, Y. L.; Ho, E. A.; Shafiq, M.; Kim, S. H.; Liu, S.Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta Biomater., 2018, 82, 12–23.
Guo, H. W.; Tan, S. J.; Gao, J.; Wang, L.Sequential release of drugs form a dual-delivery system based on pH-responsive nanofibrous mats towards wound care. J. Mater. Chem. B, 2020, 8(8), 1759–1770.
Tiwari, A. P.; Bhattarai, D. P.; Maharjan, B.; Ko, S. W.; Kim, H. Y.; Park, C. H.; Kim, C. S.Polydopamine-based implantable multifunctional nanocarpet for highly efficient photothermal-chemo therapy. Sci. Rep., 2019, 9(1), 2943.
Sang, Q. Q.; Williams, G. R.; Wu, H. L.; Liu, K. L.; Li, H. Y.; Zhu, L. M.Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 81, 359–365.
Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S.Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 2009, 324(5923), 59–63.
Shim, M. S.; Xia, Y. N.A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., 2013, 125(27), 7064–7067.
0
Views
60
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution