浏览全部资源
扫码关注微信
中国刑事警察学院刑事科学技术学院,沈阳 110035
Published:20 December 2024,
Published Online:10 October 2024,
Received:03 July 2024,
Accepted:22 July 2024
移动端阅览
安国策. 纳米技术在脲醛树脂胶黏剂改性中的应用研究进展. 高分子通报, 2024, 37(12), 1740–1756
An, G. C. Progress on urea formaldehyde resin adhesives modified by nanomaterials. Polym. Bull. (in Chinese), 2024, 37(12), 1740–1756
安国策. 纳米技术在脲醛树脂胶黏剂改性中的应用研究进展. 高分子通报, 2024, 37(12), 1740–1756 DOI: 10.14028/j.cnki.1003-3726.2024.24.194.
An, G. C. Progress on urea formaldehyde resin adhesives modified by nanomaterials. Polym. Bull. (in Chinese), 2024, 37(12), 1740–1756 DOI: 10.14028/j.cnki.1003-3726.2024.24.194.
脲醛(Urea formaldehyde
UF)树脂具有成本低廉、易于制备等优点,被用作胶粘剂大量用于人造板的生产制作中。但脲醛树脂胶粘剂在水分子的作用下会发生化学键的断裂,释放甲醛,降低脲醛树脂的性能。向脲醛树脂胶黏剂中添加纳米材料改性剂,纳米颗粒能与脲醛树脂产生物理或化学作用,实现脲醛树脂的改性提质。本文综述了利用纳米材料对脲醛树脂胶黏剂进行改性的方法。将近年来应用的纳米材料归纳为单质类纳米材料、金属氧化物纳米材料、非金属氧化物纳米材料、无机盐纳米材料、有机大分子纳米材料,并从这几个方面对纳米材料改性脲醛树脂胶黏剂的反应机理、生产工艺、改性效果等方面进行了总结。纳米材料通过光催化氧化机制、分子间作用力、氢键等机理对脲醛树脂进行改性,对于不同的纳米材料,选择不同的反应原料配比、纳米材料添加量、纳米材料添加时间、反应温度等,能优化生产工艺,起到降低甲醛释放量、增强树脂黏结性能等效果。对纳米材料进行修饰改造之后再应用于脲醛树脂改性,有望增加新的反应位点、提高纳米材料与脲醛树脂的相容性,具有一定的研究和应用前景。
Urea formaldehyde (UF) resin is widely used as an adhesive in the production of artificial boards because of the advantages of low cost and easy preparation. However
the UF resin adhesive can undergo chemical bond breakage and release formaldehyde under the attack of water molecules
which reduces the performance of UF resin. By adding nanomaterials to the UF resin adhesive
the nanoparticles can physically or chemically interact with the UF resin
thereby modifying and improving the resin. This article summarizes the methods for modifying UF resin adhesives by nanomaterials. The nanomaterials applied in recent years are classified into elemental
metal oxide
non-metal oxide
inorganic salt
and organic macromolecule nanomaterials. The reaction mechanism
production process
and modification effects are summarized. Nanomaterials modify UF resin through mechanisms such as photocatalytic oxidation
intermolecular forces
and hydrogen bonding. For different nanomaterials
selecting the suitable reaction raw material ratios
the time and amounts of nanomaterials additive and the temperature of chemical reaction can optimize production processes
reduce formaldehyde emissions
and enhance resin bonding properties. After being modified
nanomaterials can be better applied to modify UF resin. They are expected to increase new reaction sites and improve the compatibility between nanomaterials and UF resin
which has certain research and application prospects.
脲醛树脂胶黏剂纳米材料改性
Urea formaldehyde resinAdhesiveNanomaterialsModification
Liu, K. K.; Su, C. Q.; Ma, W. W.; Li, H. L.; Zeng, Z.; Li, L. Q. Free formaldehyde reduction in urea-formaldehyde resin adhesive: modifier addition effect and physicochemical property characterization. BioResources, 2020, 15(2), 2339–2355.
Kong, X. N.; Wei, Z. Y.; Xia, S. T.; Jia, B.; Gan, L.; Han, S. G. The characterizations of nanofluid type urea formaldehyde resins. Int. J. Adhes. Adhes., 2023, 126, 103451.
吴馨姝, 周吓星, 汤艳华, 吴耀飞, 马承林. 脲醛树脂胶黏剂低毒化研究现状. 化学与粘合, 2018, 40(5), 367–369.
Li, Z. Z.; Ivanenko, A.; Meng, X. C.; Zhang, Z. S. Photocatalytic oxidation of methanol to formaldehyde on bismuth-based semiconductors. J. Hazard. Mater., 2019, 380, 120822.
尹锁, 方旭峥. 人造板用甲醛捕捉剂研究进展. 中国人造板, 2023, 30(3), 10–13.
Yadav, R. Development of low formaldehyde emitting particle board by nano particle reinforcement. J. Appl. Nat. Sci.2021, 13(4), 1187–1197.
李少范, 温向宁, 鞠维龙, 苏允兰, 王笃金. 粒子-聚合物相互作用与粒子-粒子相互作用对聚合物基纳米复合物力学性能的影响. 高分子学报, 2021, 52(2), 146–157.
杨静榕. 脲醛树脂胶—它的制造、性质和应用. 云南林业科技, 1979, 4, 54–63.
韩书广, 卢晓宁, 吴羽飞, 刘启明. 脲醛树脂及其改性树脂的化学结构. 东北林业大学学报, 2007, 35(8), 36–42.
Zhang, B. G.; Jiang, S. Y.; Du, G. B.; Cao, M.; Zhou, X. J.; Wu, Z. G.; Li, T. H. Polyurea-formaldehyde resin: a novel wood adhesive with high bonding performance and low formaldehyde emission. J. Adhes., 2021, 97(5), 477–492.
Wibowo, E. S.; Park, B. D.; Causin, V. Hydrogen-bond-induced crystallization in low-molar-ratio urea-formaldehyde resins during synthesis. Ind. Eng. Chem. Res., 2020, 59(29), 13095–13104.
Taghiyari, H. R.; Esmailpour, A.; Majidi, R.; Hassani, V.; Mirzaei, R. A.; Bibalan, O. F.; Papadopoulos, A. N. The effect of silver and copper nanoparticles as resin fillers on less-studied properties of UF-based particleboards. Wood Mater. Sci. Eng., 2022, 17(5), 317–327.
Gul, W.; Akbar Shah, S. R.; Khan, A.; Ahmad, N.; Ahmed, S.; Ain, N.; Mehmood, A.; Salah, B.; Ullah, S. S.; Khan, R. Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard. Front. Mater., 2023, 10, 1206918.
Mazaheri, M.; Moghimi, H.; Ali Taheri, R. Urea impregn-ated multiwalled carbon nanotubes; a formaldehyde scavenger for urea formaldehyde adhesives and medium density fiberboards bonded with them. J. Appl. Polym. Sci., 2022, 139(1), e51445.
罗凤羽, 郑晓虹, 张聘, 万博. N型半导体金属氧化物NO2气体传感器研究进展. 功能材料与器件学报, 2020, 26(6), 372–381.
彭丽婧, 李宗伦, 李凌. 纳米二氧化钛光催化降解室内甲醛气体的研究进展. 大气与环境光学学报, 2017, 12(2), 93–99.
吴俊华, 孙玮鸿, 庞久寅, 闫文涛. 纳米二氧化钛改性脲醛树脂胶黏剂的研究. 林产工业, 2016, 43(2), 27–29.
卿彦, 关鹏飞, 詹满军, 陈秀兰, 刘文杰, 刘明, 罗莎, 李新功, 吴义强. 纳米TiO2改性脲醛树脂中游离甲醛的 光催化降解研究. 中南林业科技大学学报, 2019, 39(7), 108–113.
刘文杰, 刘明, 李新功, 李贤军, 吴义强, 卿彦, 左迎峰. 三聚氰胺/纳米TiO2联合改性脲醛树脂胶粘剂研究. 中国胶粘剂, 2018, 27(10), 10–14.
Tian, H.; Zhang, Q. Y.; Pizzi, A.; Lei, H.; Wang, J. S.; Xi, X. D. Adhesion properties and formaldehyde emissions of MnO2/UF nanocomposite adhesives. Int. J. Adhes. Adhes., 2024, 128, 103527.
Sekine, Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmos. Environ., 2002, 36(35), 5543–5547.
宋佳璇, 田珩, 雷洪, 徐高翔, 王镜淞, 普蕾, 陈庆. 纳米二氧化锰改性脲醛树脂胶黏剂试验. 林业工程学报, 2022, 36(2), 91–96.
Tian, H.; Lei, H.; Xi, X. D.; Cao, M.; Pizzi, A.; Liana, Y. T.; Zhu, J. R. Effects of nano manganese dioxide on performances of urea-formaldehyde resin. J. Adhes. Sci. Technol., 2023, 37(22), 3246–3259.
Wu, F.; Li, J. F.; Quan, H.; Han, J.; Liu, X. X.; Zhang, X. K.; Yang, J. L.; Xiang, Y. Robust polyurea/poly(urea–formaldehyde) hybrid microcapsules decorated with Al2O3 nano-shell for improved self-healing performance. Appl. Surf. Sci., 2021, 542, 148561.
Reinprecht, L.; Iždinský, J.; Vidholdová, Z. Biological resistance and application properties of particleboards containing nano-zinc oxide. Adv. Mater. Sci. Eng., 2018, 2018, 2680121.
Alabduljabbar, H.; Alyousef, R.; Gul, W.; Shah, S. R. A.; Khan, A.; Khan, R.; Alaskar, A. Effect of alumina nano-particles on physical and mechanical properties of medium density fiberboard. Materials, 2020, 13(18), 4207.
Gul, W.; Alrobei, H.; Shah, S. R. A.; Khan, A. Effect of iron oxide nanoparticles on the physical properties of medium density fiberboard. Polymers, 2020, 12(12), 2911.
Gul, W.; Shah, S.; Khan, A.; Pruncu, C. Characterization of zinc oxide-urea formaldehyde nano resin and its impact on the physical performance of medium-density fiberboard. Polymers, 2021, 13(3), 371.
豆鹏飞. 稀土La2O3改性脲醛树脂的黏度特性研究. 橡塑技术与装备, 2020, 46(3), 26–30.
Samaržija-Jovanović, S.; Jovanović, V.; Petković, B.; Dekić, V.; Marković, G.; Zeković, I.; Marinović-Cincović, M. Nanosilica and wood flour-modified urea–formaldehyde composites. J. Thermoplast. Compos. Mater., 2016, 29(5), 656–669.
Weng, M. Y.; Zhu, Y. T.; Mao, W. G.; Zhou, J. C.; Xu, W. Nano-silica/urea-formaldehyde resin-modified fast-growing lumber performance study. Forests, 2023, 14(7), 1440.
赵强, 季姣, 贾爱铨, 辛志峰, 张千峰. 有机改性纳米二氧化硅和介孔SBA-15并固载钌配合物的表征与催化加氢性质. 中国科学: 化学, 2020, 50(6), 695–706.
Xiao, J.; Guo, D.; Xia, C.; Li, T.; Lian, H. Application of nano-SiO2 reinforced urea-formaldehyde resin and molecular dynamics simulation study. Materials, 2022, 15(24), 8716.
Bardak, T.; Sozen, E.; Kayahan, K.; Bardak, S. The impact of nanoparticles and moisture content on bonding strength of urea formaldehyde resin adhesive. Drvna Ind., 2018, 69(3), 247–252.
Roumeli, E.; Papadopoulou, E.; Pavlidou, E.; Vourlias, G.; Bikiaris, D.; Paraskevopoulos, K. M.; Chrissafis, K. Synthesis, characterization and thermal analysis of urea—formaldehyde/nanoSiO2 resins. Thermochim. Acta, 2012, 527, 33–39.
俞丽珍, 樊玉昌, 刘璇, 沈丽梅, 于清洋, 顾顺飞. 纳米二氧化硅改性脲醛树脂胶粘剂的合成工艺及性能. 中国胶粘剂, 2014, 23(9), 45–48.
Jovanović, V.; Samaržija-Jovanović, S.; Petković, B. B.; Jovanović, S.; Marković, G.; Porobić, S.; Marinović-Cincović, M. Nano-silica-based urea–formaldehyde composite with some derivates of coumarin as formaldehyde scavenger: hydrolytical and thermal stability. Polym. Bull., 2021, 78(1), 399–413.
Wu, L.; Guo, J. F.; Zhang, Z. Y.; Zhao, S. Influence of oxidized starch and modified nano-SiO₂ on performance of urea-formaldehyde (UF) resin. Polym. Korea, 2017, 41(1), 83.
吴鲁. 纳米SiO2/氧化淀粉复合改性脲醛树脂的制备及性能研究. 哈尔滨: 东北林业大学, 2017.
Omrani, P.; Taghiyari, H. R.; Zolghadr, M. Effects of nano-clay on physical and mechanical properties of medium-density fiberboards made from wood and chicken-feather fibers and two types of resins. Drvna Ind., 2018, 69(4), 329–337.
于晓芳, 王喜明. 有机蒙脱土改性脲醛树脂胶黏剂的制备及结构表征. 高分子学报, 2014, (9), 1286–1291.
谢序勤, 王新洲, 汪雪. 纳米蒙脱土改性脲醛树脂耐久性研究. 中国人造板, 2019, 26(S1), 35–40.
杨吉, 张永航, 范娟娟, 闵样, 班大明. 聚磷酸酯阻燃剂复配蒙脱土及聚磷酸铵对环氧树脂阻燃性能的影响. 中国科学: 化学, 2020, 50(4), 489–497.
Ismita, N.; Lokesh, C. Effects of different nanoclay loadings on the physical and mechanical properties of Melia composita particle board. Bois For. Trop., 2018, 334, 7.
Yadav, S. M.; Lubis, M. A. R.; Wibowo, E. S.; Park, B. D. Effects of nanoclay modification with transition metal ion on the performance of urea–formaldehyde resin adhesives. Polym. Bull., 2021, 78(5), 2375–2388.
Khorramabadi, L. A.; Behrooz, R.; Kazemi, S. Effects of nanoclay modification with aminopropyltriethoxysilane (APTES) on the performance of urea–formaldehyde resin adhesives. BioResources, 2023, 18(3), 5417–5434.
王新洲, 邓玉和, 王思群, 余旺旺, 何爽爽, 张杰. 有机蒙脱土改性脲醛树脂的结构与纳米力学研究. 光谱学与光谱分析, 2016, 36(6), 1680–1684.
Yadav, S. M.; Lubis, M. A. R.; Park, B. D. Modification of nanoclay with different methods and its application in urea-formaldehyde bonded plywood panels. Wood Mater. Sci. Eng., 2022, 17(6), 734–743.
李静, 徐丽, 宋怀俊, 刘国际. 埃洛石纳米管改性聚苯并恶嗪基复合材料研究. 热固性树脂, 2019, 34(4), 24–30.
孙攀, 刘国明, 吕冬, 董侠, 吴景深, 王笃金. 埃洛石纳米管增强聚合物复合材料研究进展. 中国科学: 技术科学, 2015, 45(6), 602–616.
Song, J. B.; Chen, S. W.; Yi, X. B.; Zhao, X. F.; Zhang, J.; Liu, X. C.; Liu, B. X. Preparation and properties of the urea-formaldehyde res-In/reactive halloysite nanocomposites adhesive with low-formaldehyde emission and good water resistance. Polymers, 2021, 13(14), 2224.
Muñoz, F.; Moya, R. Effect of nanoclay-treated UF resin on the physical and mechanical properties of plywood manufactured with wood from tropical fast growth plantations. Maderas-Cienc. Tecnol., 2018, 20(1), 11–24.
孙吉书, 耿艺通, 肖田, 靳灿章. 改性硅藻土/SBS/高粘剂复合改性沥青研究. 热固性树脂, 2022, 5, 14–21.
Funk, M.; Wimmer, R.; Adamopoulos, S. Diatomaceous earth as an inorganic additive to reduce formaldehyde emissions from particleboards. Wood Mater. Sci. Eng., 2015, 1–6.
Yildirim, M.; Candan, Z.; Gonultas, O. Chemical perfor-mance analysis of nanocellulose/boron-compound-reinforced hybrid UF resin. Green Mater., 2022, 10(2), 90–96.
Omrani, P.; Abdolzadeh, H.; Roshan, F.; Ganjkhani, M. Applicational properties of reinforced plywood with nanomaterials and kenaf fiber. BioResources, 2023, 18(4), 7054–7065.
Zhang, Y.; Liu, C.; Wang, S. Q.; Wu, Y.; Meng, Y. J.; Cui, J. Q.; Zhou, Z. B.; Ma, L. B. The influence of nanocellulose and silicon dioxide on the mechanical properties of the cell wall with relation to the bond interface between wood and urea-formaldehyde resin. Wood Fiber Sci., 2015, 47(3), 1–9.
Wibowo, E. S.; Lubis, M. A. R.; Park, B. D. In-situ modification of low molar ratio urea—formaldehyde resins with cellulose nanofibrils for plywood. J. Adhes. Sci. Technol., 2021, 35(22), 2452–2465.
Kawalerczyk, J.; Walkiewicz, J.; Dziurka, D.; Mirski, R.; Brózdowski, J. APTES-modified nanocellulose as the formaldehyde scavenger for UF adhesive-bonded particleboard and strawboard. Polymers, 2022, 14(22), 5037.
张浩, 蒲俊文, 洪亮, 朱明. 纳米结晶纤维素改善脲醛树脂胶黏剂游离甲醛的研究. 林产化学与工业, 2016, 36(1), 99–104.
Yalçın, Ö. Ü. Improved properties of particleboards produced with urea formaldehyde adhesive containing nanofibrillated cellulose and titanium dioxide. BioResources, 2023, 18(2), 3267–3278.
0
Views
202
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution