浏览全部资源
扫码关注微信
1.广东工业大学轻工化工学院,广州 511400
2.广东工业大学生物医药学院,广州 511400
3.化学与精细化工广东省实验室揭阳分中心,揭阳 515200
4.五邑大学环境与化学工程学院,江门 529020
Received:23 July 2024,
Accepted:2024-09-16,
Published Online:07 November 2024,
Published:20 January 2025
移动端阅览
余丛廷, 席冠, 栾天罡. 基于光热转换的光驱动柔性致动器. 高分子通报, 2025, 38(1), 14–40.
Yu, C. T.; Xi, G.; Luan, T. G. Light-driven soft actuators ased on photothermal conversion materials. Polym. Bull. (in Chinese), 2025, 38(1), 14–40.
余丛廷, 席冠, 栾天罡. 基于光热转换的光驱动柔性致动器. 高分子通报, 2025, 38(1), 14–40. DOI: 10.14028/j.cnki.1003-3726.2024.24.213.
Yu, C. T.; Xi, G.; Luan, T. G. Light-driven soft actuators ased on photothermal conversion materials. Polym. Bull. (in Chinese), 2025, 38(1), 14–40. DOI: 10.14028/j.cnki.1003-3726.2024.24.213.
柔性致动器作为一种新型能量转化器件,能够将外部环境的光、热、电、湿度等能量转化为机械能。它具有轻量化、小型化和智能化等特点,在人造肌肉、微型机械臂和柔性机器人等领域中逐渐得到广泛应用。其中,光驱动柔性致动器由于具有非接触式操作、快速响应、可编程和多功能性等优势,受到了众多研究学者的关注。本文旨在系统总结光热转换材料在柔性致动器中的最新研究进展。首先介绍柔性基底的选择,其次讨论不同类型光热转换机制的光热转换材料,探讨这些材料的基本特性及其在柔性致动器中的具体应用,如柔性机器人、柔性抓取器和振荡器等。最后分析当前柔性致动器设计所面临的挑战并对未来研究可能存在的问题及其潜在解决方案给予讨论,以期为光热转换材料在柔性致动器中的应用提供参考。
Soft actuator
as a new type of energy conversion device
can convert light
heat
electricity
humidity and other energies from the external environment into mechanical energy. It has gradually been widely used in the fields of artificial muscles
micro robotic arms and soft robots with the features of lightweight
miniaturization and intelligence. Among them
light-driven soft actuators have attracted the attention of many research scholars due to the advantages of non-contact operation
fast response
programmability and versatility. The aim of this review is to systematically summarize the recent research progress of photothermal conversion materials in soft actuators. Firstly
the selection of soft substrates is introduced. Secondly
the photothermal conversion materials with different types of photothermal conversion mechanisms are discussed. We discuss the specific applications of these materials in soft actuators
such as soft robots
soft grippers and oscillators. Finally
the current challenges in soft actuator design are analyzed and potential problems and potential solutions for future research are discussed. It is expected that these contents can provide some understanding and reference for the application of photothermal conversion materials in soft actuators.
Li, W. J. ; Guan, Q. W. ; Li, M. ; Saiz, E. ; Hou, X . Nature-inspired strategies for the synthesis of hydrogel actuators and their applications . Prog. Polym. Sci. , 2023 , 140 , 101665 .
Zhao, F. ; Guo, Y. H. ; Zhou, X. Y. ; Shi, W. ; Yu, G. H . Materials for solar-powered water evaporation . Nat. Rev. Mater. , 2020 , 5 , 388 – 401 .
Cui, X. M. ; Ruan, Q. F. ; Zhuo, X. L. ; Xia, X. Y. ; Hu, J. T. ; Fu, R. F. ; Li, Y. ; Wang, J. F. ; Xu, H. X . Photothermal nanomaterials: a powerful light-to-heat converter . Chem. Rev. , 2023 , 123 ( 11 ), 6891 – 6952 .
Wang, H. J. ; Ouyang, W. ; Yu, Y. Y. ; Wang, J. J. ; Yuan, H. B. ; Hua, J. J. ; Jiang, Y. W . Analysis of non-volatile and volatile metabolites reveals the influence of second-drying heat transfer methods on green tea quality . Food Chem. X , 2022 , 14 , 100354 .
Zhao, S. W. ; Yuan, A. Q. ; Xu, H. L. ; Wei, Z. K. ; Zhou, S. Y. ; Xiao, Y. ; Jiang, L. ; Lei, J. X . Elevating the photothermal conversion efficiency of phase-change materials simultaneously toward solar energy storage, self-healing, and recyclability . ACS Appl. Mater. Interfaces , 2022 , 14 ( 25 ), 29213 – 29222 .
Izquierdo, S. ; Melia Rodrigo, M. ; Gonzalez-Arellano, C. ; Benito, J. M. ; Fernández, J. M. G. ; Mendicuti, F. ; Marcelo, G . In situ preparation of PNIPAM biphasic hydrogels . Eur. Polym. J. , 2023 , 192 , 112067 .
Zhou, B. Z. ; Aouraghe, M. A. ; Chen, W. ; Jiang, Q. R. ; Xu, F. J . Highly responsive soft electrothermal actuator with high-output force based on polydimethylsiloxane (PDMS)-coated carbon nanotube (CNT) sponge . Nano Lett. , 2023 , 23 ( 14 ), 6504 – 6511 .
Wang, Z. C. ; Zhang, X. ; Cao, T. ; Wang, T. ; Sun, L. X. ; Wang, K. Y. ; Fan, X. D . Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel . ACS Appl. Mater. Interfaces , 2021 , 13 ( 38 ), 46022 – 46032 .
Agrawal, N. ; Gaur, S. ; Mani, K. V. ; Arora, R . Carbon nanotubes/polyurethane foam for noise passivation at 4000 Hz . ACS Appl. Nano Mater. , 2024 , 7 ( 1 ), 129 – 141 .
郭晶晶 , 郭校言 , 脱佳霖 , 李卓洲 , 徐立军 . 柔性有机聚合物光子器件及其生物医学应用 . 激光与光电子学进展 , 2023 , 60 ( 13 ), 1316002 .
Haq, M. A. ; Su, Y. L. ; Wang, D. J . Mechanical properties of PNIPAM based hydrogels: a review . Mater. Sci. Eng. C , 2017 , 70 , 842 – 855 .
Luo, G. F. ; Chen, W. H. ; Zhang, X. Z . 100th Anniversary of macromolecular science viewpoint: poly( N -iso-propylacrylamide)-based thermally responsive micelles . ACS Macro Lett. , 2020 , 9 ( 6 ), 872 – 881 .
Tang, L. ; Wang, L. ; Yang, X. ; Feng, Y. Y. ; Li, Y. ; Feng, W . Poly( N -isopropylacrylamide)-based smart hydrogels: design, properties and applications . Prog. Mater. Sci. , 2021 , 115 , 100702 .
Zhang, X. B. ; Pint, C. L. ; Lee, M. H. ; Schubert, B. E. ; Jamshidi, A. ; Takei, K. ; Ko, H. ; Gillies, A. ; Bardhan, R. ; Urban, J. J. ; Wu, M. ; Fearing, R. ; Javey, A . Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites . Nano Lett. , 2011 , 11 ( 8 ), 3239 – 3244 .
Li, Y. X. ; Liu, L. C. ; Xu, H. ; Cheng, Z. H. ; Yan, J. H. ; Xie, X. M . Biomimetic gradient hydrogel actuators with ultrafast thermo-responsiveness and high strength . ACS Appl. Mater. Interfaces , 2022 , 14 ( 28 ), 32541 – 32550 .
Zhang, Y. S. ; Khademhosseini, A . Advances in engineering hydrogels . Science , 2017 , 356 ( 6337 ), eaaf3627 .
Tatarchuk, V. ; Gromilov, S. ; Plyusnin, P . One-step synthesis and characterization of gold nanoparticles doped polyacrylamide hydrogels . J. Sol Gel Sci. Technol. , 2024 , 110 ( 2 ), 377 – 390 .
Pastoriza-Santos, I. ; Kinnear, C. ; Pérez-Juste, J. ; Mulvaney, P. ; Liz-Marzán, L. M . Plasmonic polymer nanocomposites . Nat. Rev. Mater. , 2018 , 3 , 375 – 391 .
Li, Y. J. ; Tian, Z. Y. ; Li, C. J. ; Li, Z. ; Yu, Z. Z. ; Yang, D . Bionic light-responsive hydrogel actuators with multiple-freedom motions in water environments . Nano Energy , 2024 , 130 , 110130 .
Dalei, G. ; Das, S . Polyacrylic acid-based drug delivery systems: a comprehensive review on the state-of-art . J. Drug Deliv. Sci. Technol. , 2022 , 78 , 103988 .
Li, A. ; Jia, Y. F. ; Sun, S. T. ; Xu, Y. S. ; Minsky, B. B. ; Cohen Stuart, M. A. ; Cölfen, H. ; von Klitzing, R. ; Guo, X. H . Mineral-enhanced polyacrylic acid hydrogel as an oyster-inspired organic-inorganic hybrid adhesive . ACS Appl. Mater. Interfaces , 2018 , 10 ( 12 ), 10471 – 10479 .
Jiang, Y. Z. ; Wang, C. ; Zhang, S. ; Tan, L. ; Hu, J. L . One stone, two birds: Spidroin-inspired nanogels for high-performance fibers and photothermal actuators . Adv. Funct. Mater. , 2023 , 33 ( 35 ), 2303387 .
金欣 , 畅旭东 , 王闻宇 , 朱正涛 , 林童 . 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展 . 材料工程 , 2018 , 46 ( 11 ), 13 – 24 .
Ariati, R. ; Sales, F. ; Souza, A. ; Lima, R. A. ; Ribeiro, J . Polydimethylsiloxane composites characterization and its applications: a review . Polymers , 2021 , 13 ( 23 ), 4258 .
Chang, E. J. ; Lin, M. F . Enhanced actuation performance of multiple stimuli responsive PDMS-based bilayer actuators by adding ionic liquid . Sens. Actuat. B Chem. , 2024 , 404 , 135300 .
Liao, Z. S. ; Hossain, M. ; Yao, X. H. ; Navaratne, R. ; Chagnon, G . A comprehensive thermo-viscoelastic experimental investigation of Ecoflex polymer . Polym. Test. , 2020 , 86 , 106478 .
Luis, E. ; Pan, H. M. ; Bastola, A. K. ; Bajpai, R. ; Sing, S. L. ; Song, J. H. ; Yeong, W. Y . 3D printed silicone meniscus implants: influence of the 3D printing process on properties of silicone implants . Polymers , 2020 , 12 ( 9 ), 2136 .
Lavazza, J. ; Contino, M. ; Marano, C . Strain rate, temperature and deformation state effect on Ecoflex 00-50 silicone mechanical behaviour . Mech. Mater. , 2023 , 178 , 104560 .
Li, H. J. ; Liang, Y. ; Gao, G. R. ; Wei, S. X. ; Jian, Y. K. ; Le, X. X. ; Lu, W. ; Liu, Q. Q. ; Zhang, J. W. ; Chen, T . Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance . Chem. Eng. J. , 2021 , 415 , 128988 .
Ahmed, N. ; Kausar, A. ; Muhammad, B . Advances in shape memory polyurethanes and composites: a review . Polym. Plast. Technol. Eng. , 2015 , 54 ( 13 ), 1410 – 1423 .
崔航 , 王锋 , 胡剑青 , 涂伟萍 . 形状记忆聚氨酯材料的研究进展 . 材料导报 , 2017 , 31 ( 3 ), 1 – 6 .
Yue, X. L. ; Dong, C. ; Wang, Y. C. ; Cui, Z. S. ; Ren, Z. H. ; Guan, Z. H . Three birds with one stone: design and synthesis of polyurethane actuator for executing heat, light and humidity triggered deformation . Chem. Eng. J. , 2023 , 457 , 141290 .
Kang, J. W. ; Choi, K. ; Jo, W. H. ; Hsu, S. L . Structure-property relationships of polyimides: a molecular simulation approach . Polymer , 1998 , 39 ( 26 ), 7079 – 7087 .
Ke, H. J. ; Zhao, L. W. ; Zhang, X. H. ; Qiao, Y. J. ; Wang, G. Y. ; Wang, X. D . Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide . Polym. Test. , 2020 , 90 , 106746 .
吕刚 , 杨伟 , 毛丹波 , 吴时彬 , 任戈 . 有成像潜力的聚酰亚胺薄膜的制备方法 . 光电工程 , 2021 , 48 ( 4 ), 200381 .
Huang, Y. L. ; Jiang, J. H. ; Li, J. N. ; Su, C. L. ; Yu, Q. H. ; Wang, Z. X. ; Chen, N. L. ; Shao, H. Q . Light-driven bi-stable actuator with oriented polyimide fiber reinforced structure . Compos. Commun. , 2022 , 31 , 101128 .
Xu, W. Z. ; Dong, P. L. ; Lin, S. P. ; Kuang, Z. W. ; Zhang, Z. Q. ; Wang, S. L. ; Ye, F. M. ; Cheng, L. ; Wu, H. P. ; Liu, A. P . Bioinspired bilayer hydrogel-based actuator with rapidly bidirectional actuation, programmable deformation and devisable functionality . Sens. Actuat. B Chem. , 2022 , 359 , 131547 .
Verpaalen, R. C. P. ; Pilz da Cunha, M. ; Engels, T. A. P. ; Debije, M. G. ; Schenning, A. P. H. J . Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuators . Angew. Chem. Int. Ed. , 2020 , 59 ( 11 ), 4532 – 4536 .
Kangishwar, S. ; Radhika, N. ; Sheik, A. A. ; Chavali, A. ; Hariharan, S . A comprehensive review on polymer matrix composites: material selection, fabrication, and application . Polym. Bull. , 2023 , 80 ( 1 ), 47 – 87 .
Zhang, Y. ; Liu, H. Y. ; Weng, Y. X . Theoretical and experimental investigation of the electronic propensity rule: a linear relationship between radiative and nonradiative decay rates of molecules . J. Phys. Chem. Lett. , 2023 , 14 ( 18 ), 4151 – 4157 .
Ghivela, G. C. ; Sengupta, J . The promise of graphene: a survey of microwave devices based on graphene . IEEE Microw. Mag. , 2020 , 21 ( 2 ), 48 – 65 .
Singh, S. ; Hasan, M. R. ; Sharma, P. ; Narang, J . Graphene nanomaterials: the wondering material from synthesis to applications . Sens. Int. , 2022 , 3 , 100190 .
Lee, X. J. ; Hiew, B. Y. Z. ; Lai, K. C. ; Lee, L. Y. ; Gan, S. Y. ; Thangalazhy-Gopakumar, S. ; Rigby, S . Review on graphene and its derivatives: synthesis methods and potential industrial implementation . J. Taiwan Inst. Chem. Eng. , 2019 , 98 , 163 – 180 .
Han, B. ; Zhang, Y. L. ; Chen, Q. D. ; Sun, H. B . Carbon-based photothermal actuators . Adv. Funct. Mater. , 2018 , 28 ( 40 ), 1802235 .
Torres, I. ; Fernández, S. ; Fernández-Vallejo, M. ; Arnedo, I. ; Gandía, J. J . Graphene-based electrodes for silicon heterojunction solar cell technology . Materials , 2021 , 14 ( 17 ), 4833 .
Maine, E. ; Seegopaul, P . Graphene steps into biomedicine . Nat.Mater. , 2016 , 15 , 485 .
Ye, M. H. ; Zhang, Z. P. ; Zhao, Y. ; Qu, L. T . Graphene platforms for smart energy generation and storage . Joule , 2018 , 2 ( 2 ), 245 – 268 .
Liang, J. W. ; Liu, Y. X. ; Si, Z. C. ; Wei, G. D. ; Weng, D. ; Kang, F. Y . Graphene quantum dots piecing together into graphene on nano Au for overall water splitting . Carbon , 2021 , 178 , 265 – 272 .
Yildiz, G. ; Bolton-Warberg, M. ; Awaja, F . Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples . Acta Biomater. , 2021 , 131 , 62 – 79 .
Lin, J. ; Chen, X. Y. ; Huang, P . Graphene-based nanomaterials for bioimaging . Adv. Drug Deliv. Rev. , 2016 , 105 , 242 – 254 .
Pan, X. R. ; Ji, J. H. ; Zhang, N. N. ; Xing, M. Y . Research progress of graphene-based nanomaterials for the environmental remediation . Chin. Chem. Lett. , 2020 , 31 ( 6 ), 1462 – 1473 .
Yam, K. ; Guo, N. ; Jiang, Z. L. ; Li, S. L. ; Zhang, C . Graphene-based heterogeneous catalysis: role of graphene . Catalysts , 2020 , 10 ( 1 ), 53 .
Li, Y. H. ; Tang, Z. R. ; Xu, Y. J . Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis . Chin. J. Catal. , 2022 , 43 ( 3 ), 708 – 730 .
Kumar, R. ; Singh, D. P. ; Muñoz, R. ; Amami, M. ; Singh, R. K. ; Singh, S. ; Kumar, V . Graphene-based materials for biotechnological and biomedical applications: drug delivery, bioimaging and biosensing . Mater. Today Chem. , 2023 , 33 , 101750 .
Kuila, T. ; Bose, S. ; Mishra, A. K. ; Khanra, P. ; Kim, N. H. ; Lee, J. H . Chemical functionalization of graphene and its applications . Prog. Mater. Sci. , 2012 , 57 ( 7 ), 1061 – 1105 .
Wang, Y. ; Li, S. S. ; Yang, H. Y. ; Luo, J . Progress in the functional modification of graphene/graphene oxide: a review . RSC Adv. , 2020 , 10 ( 26 ), 15328 – 15345 .
Dreyer, D. R. ; Park, S. ; Bielawski, C. W. ; Ruoff, R. S . The chemistry of graphene oxide . Chem. Soc. Rev. , 2010 , 39 ( 1 ), 228 – 240 .
Li, M. ; Wang, C. C . Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials . Renew. Energy , 2019 , 141 , 1005 – 1012 .
赵建玲 , 马晨雨 , 李建强 , 李晓禹 . 基于全光谱太阳光利用的光热转换材料研究进展 . 材料工程 , 2019 , 47 , 11 – 19 .
Ma, C. X. ; Lu, W. ; Yang, X. X. ; He, J. ; Le, X. X. ; Wang, L. ; Zhang, J. W. ; Serpe, M. J. ; Huang, Y. J. ; Chen, T . Actuators: bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors . Adv. Funct. Mater. , 2018 , 28 ( 7 ), 1870043 .
Guo, J. W. ; Wang, C. F. ; Lai, J. Y. ; Lu, C. H. ; Chen, J. K . Poly( N -isopropylacrylamide)-gelatin hydrogel membranes with thermo-tunable pores for water flux gating and protein separation . J. Membr. Sci. , 2021 , 618 , 118732 .
Dong, Y. ; Wang, J. ; Guo, X. K. ; Yang, S. S. ; Ozen, M. O. ; Chen, P. ; Liu, X. ; Du, W. ; Xiao, F. ; Demirci, U. ; Liu, B. F . Multi-stimuli-responsive programmable biomimetic actuator . Nat. Commun. , 2019 , 10 ( 1 ), 4087 .
Amjadi, M. ; Sitti, M . High-performance multiresponsive paper actuators . ACS Nano , 2016 , 10 ( 11 ), 10202 – 10210 .
Peng, X. ; Liu, T. Q. ; Shang, C. ; Jiao, C. ; Wang, H. L . Mechanically strong Janus poly( N -isopropylacrylamide)/graphene oxide hydrogels as thermo-responsive soft robots . Chinese J. Polym. Sci. , 2017 , 35 ( 10 ), 1268 – 1275 .
Guo, Q. Q. ; Liu, Y. N. ; Liu, J. Z. ; Wang, Y. Y. ; Cui, Q. K. ; Song, P. G. ; Zhang, X. X. ; Zhang, C. H . Hierarchically structured hydrogel actuator for microplastic pollutant detection and removal . Chem. Mater. , 2022 , 34 ( 11 ), 5165 – 5175 .
Wang, Y. Y. ; Su, G. H. ; Li, J. ; Guo, Q. Q. ; Miao, Y. G. ; Zhang, X. X . Robust, healable, self-locomotive integrated robots enabled by noncovalent assembled gradient nanostructure . Nano Lett. , 2022 , 22 ( 13 ), 5409 – 5419 .
吴俊凯 , 谢海滢 , 冀程亮 , 赵志国 , 马兰超 . 碳纳米管/聚合物基柔性电磁干扰屏蔽复合材料研究进展 . 高分子通报 , 2024 , 37 ( 5 ), 640 – 658 .
董晓娜 , 夏俊 , 游胜勇 , 孙复钱 , 王书芬 . 碳纳米管及其改性复合材料的研究进展与展望 . 生物化工 , 2023 , 9 ( 03 ), 178 – 180+185 .
Mohd Nurazzi, N. ; Asyraf, M. R. M. ; Khalina, A. ; Abdullah, N. ; Sabaruddin, F. A. ; Kamarudin, S. H. ; Ahmad, S. ; Mahat, A. M. ; Lee, C. L. ; Aisyah, H. A. ; Norrrahim, M. N. F. ; Ilyas, R. A. ; Harussani, M. M. ; Ishak, M. R. ; Sapuan, S. M . Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: an overview . Polymers , 2021 , 13 ( 7 ), 1047 .
Lin, Z. W. ; Beltran, L. C. ; De Los Santos, Z. A. ; Li, Y. N. ; Adel, T. ; Fagan, J. A. ; Hight Walker, A. R. ; Egelman, E. H. ; Zheng, M . DNA-guided lattice remodeling of carbon nanotubes . Science , 2022 , 377 ( 6605 ), 535 – 539 .
Park, S. H. ; Jang, H. K. ; Park, Y. J. ; Hong, S. Y. ; Choi, J. B. ; Huh, N. S. ; Suhr, J. ; Kim, K . Prediction of mechanical properties of MWCNT-reinforced composites using the RVE model . Mod. Phys. Lett. B , 2018 , 32 , 1850196 .
Panda, S. ; Acharya, B . PDMS/MWCNT nanocomposites as capacitive pressure sensor and electromagnetic interference shielding materials . J. Mater. Sci. Mater. Electron. , 2021 , 32 ( 12 ), 16215 – 16229 .
Mu, P. ; Ma, W. Y. ; Zhao, Y. B. ; Zhang, C. ; Ren, S. J. ; Wang, F. ; Yan, C. ; Chen, Y. ; Zeng, J. H. ; Jiang, J. X . Facile preparation of MnO/nitrogen-doped porous carbon nanotubes composites and their application in energy storage . J. Power Sources , 2019 , 426 , 33 – 39 .
Cha, J. ; Jin, S. ; Shim, J. H. ; Park, C. S. ; Ryu, H. J. ; Hong, S. H . Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites . Mater. Des. , 2016 , 95 , 1 – 8 .
Miyako, E. ; Hosokawa, C. ; Kojima, M. ; Yudasaka, M. ; Funahashi, R. ; Oishi, I. ; Hagihara, Y. ; Shichiri, M. ; Takashima, M. ; Nishio, K. ; Yoshida, Y . A photo-thermal-electrical converter based on carbon nanotubes for bioelectronic applications . Angew. Chem. Int. Ed. , 2011 , 50 ( 51 ), 12266 – 12270 .
Lu, Y. ; Zhang, H. ; Fan, D. Q. ; Chen, Z. P. ; Yang, X. F . Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment . J. Hazard. Mater. , 2022 , 423 , 127128 .
He, W. ; Zhou, L. ; Wang, M. ; Cao, Y. ; Chen, X. M. ; Hou, X . Structure development of carbon-based solar-driven water evaporation systems . Sci. Bull. , 2021 , 66 ( 14 ), 1472 – 1483 .
Yin, C. ; Wei, F. N. ; Fu, S. H. ; Zhai, Z. S. ; Ge, Z. X. ; Yao, L. G. ; Jiang, M. L. ; Liu, M . Visible light-driven jellyfish-like miniature swimming soft robot . ACS Appl. Mater. Interfaces , 2021 , 13 ( 39 ), 47147 – 47154 .
Gao, M. M. ; Zhu, L. L. ; Peh, C. K. ; Ho, G. W . Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production . Energy Environ. Sci. , 2019 , 12 ( 3 ), 841 – 864 .
He, T. X. ; Lv, S. H. ; Wei, D. Q. ; Feng, R. ; Yang, J. H. ; Yan, Y. H. ; Liu, L. P. ; Wu, L . Photothermal conversion of hydrogel-based biomaterial . Chem. Rec. , 2023 , 23 ( 11 ), e202300184 .
Jia, J. ; Liu, G. Y. ; Xu, W. J. ; Tian, X. L. ; Li, S. B. ; Han, F. ; Feng, Y. H. ; Dong, X. C. ; Chen, H. Y . Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window . Angew. Chem. Int. Ed. , 2020 , 59 ( 34 ), 14443 – 14448 .
Xu, W. J. ; Qian, J. M. ; Hou, G. H. ; Suo, A. L. ; Wang, Y. P. ; Wang, J. L. ; Sun, T. T. ; Yang, M. ; Wan, X. L. ; Yao, Y . Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer . ACS Appl. Mater. Interfaces , 2017 , 9 ( 42 ), 36533 – 36547 .
He, X. D. ; Sathishkumar, G. ; Gopinath, K. ; Zhang, K. ; Lu, Z. S. ; Li, C. M. ; Kang, E. T. ; Xu, L. Q . One-step self-assembly of biogenic Au NPs/PEG-based universal coatings for antifouling and photothermal killing of bacterial pathogens . Chem. Eng. J. , 2021 , 421 , 130005 .
Zhong, Q. X. ; Feng, J. ; Jiang, B. ; Fan, Y. L. ; Zhang, Q. ; Chen, J. X. ; Yin, Y. D . Strain-modulated seeded growth of highly branched black Au superparticles for efficient photothermal conversion . J. Am. Chem. Soc. , 2021 , 143 ( 48 ), 20513 – 20523 .
Bai, Q. G. ; Zhang, C. ; Tan, F. Q. ; Zhang, Z. H . High-performance, low-cost nanoporous alloy actuators by one-step dealloying of Al-Ni-Cu precursors . Intermetallics , 2022 , 145 , 107537 .
Bisoyi, H. K. ; Urbas, A. M. ; Li, Q . Soft materials driven by photothermal effect and their applications . Adv. Opt. Mater. , 2018 , 6 ( 15 ), 1800458 .
Zhao, Y. S. ; Xuan, C. ; Qian, X. S. ; Alsaid, Y. ; Hua, M. T. ; Jin, L. H. ; He, X. M . Soft phototactic swimmer based on self-sustained hydrogel oscillator . Sci. Robot. , 2019 , 4 ( 33 ), eaax7112 .
Sun, Z. F. ; Yamauchi, Y. ; Araoka, F. ; Kim, Y. S. ; Bergueiro, J. ; Ishida, Y. ; Ebina, Y. ; Sasaki, T. ; Hikima, T. ; Aida, T . An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling . Angew. Chem. Int. Ed. , 2018 , 57 ( 48 ), 15772 – 15776 .
Li, M. T. ; Wang, X. ; Dong, B. ; Sitti, M . In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator . Nat. Commun. , 2020 , 11 ( 1 ), 3988 .
张建峰 , 曹惠杨 , 王红兵 . 新型二维材料MXene的研究进展 . 无机材料学报 , 2017 , 32 ( 6 ), 561 – 570 .
Ihsanullah, I . MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects . Chem. Eng. J. , 2020 , 388 , 124340 .
Naguib, M. ; Barsoum, M. W. ; Gogotsi, Y . Ten years of progress in the synthesis and development of MXenes . Adv. Mater. , 2021 , 33 ( 39 ), e2103393 .
Li, X. L. ; Huang, Z. D. ; Shuck, C. E. ; Liang, G. J. ; Gogotsi, Y. ; Zhi, C. Y . MXene chemistry, electrochemistry and energy storage applications . Nat. Rev. Chem. , 2022 , 6 ( 6 ), 389 – 404 .
Tang, X. ; Zhou, D. ; Li, P. ; Guo, X. ; Wang, C. Y. ; Kang, F. Y. ; Li, B. H. ; Wang, G. X . High-performance quasi-solid-state MXene-based Li-I batteries . ACS Cent. Sci. , 2019 , 5 ( 2 ), 365 – 373 .
Li, B. ; Sun, K. ; Xu, W. Y. ; Liu, X. J. ; Wang, A. ; Boles, S. ; Xu, B. ; Hu, H. B. ; Yao, D. R . Tailoring interlayer spacing in MXene cathodes to boost the desalination performance of hybrid capacitive deionization systems . Nano Res. , 2023 , 16 ( 5 ), 6039 – 6047 .
Khorsandi, D. ; Yang, J. W. ; Ülker, Z. ; Bayraktaroğlu, K. ; Zarepour, A. ; Iravani, S. ; Khosravi, A . MXene-based nano(bio)sensors for the detection of biomarkers: a move towards intelligent sensors . Microchem. J. , 2024 , 197 , 109874 .
Yu, S. J. ; Tang, H. ; Zhang, D. ; Wang, S. Q. ; Qiu, M. Q. ; Song, G. ; Fu, D. ; Hu, B. W. ; Wang, X. K . MXenes as emerging nanomaterials in water purification and environmental remediation . Sci. Total Environ. , 2022 , 811 , 152280 .
Urso, M. ; Ussia, M. ; Novotný, F. ; Pumera, M . Trapping and detecting nanoplastics by MXene-derived oxide microrobots . Nat. Commun. , 2022 , 13 ( 1 ), 3573 .
Xu, D. X. ; Li, Z. D. ; Li, L. S. ; Wang, J . Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications . Adv. Funct. Mater. , 2020 , 30 , 2000712 .
Maleski, K. ; Shuck, C. E. ; Fafarman, A. T. ; Gogotsi, Y . The broad chromatic range of two-dimensional transition metal carbides . Adv. Opt. Mater. , 2021 , 9 ( 4 ), 2001563 .
Li, R. Y. ; Zhang, L. B. ; Shi, L. ; Wang, P . MXene Ti 3 C 2 : an effective 2D light-to-heat conversion material . ACS Nano , 2017 , 11 ( 4 ), 3752 – 3759 .
Xue, P. ; Bisoyi, H. K. ; Chen, Y. H. ; Zeng, H. ; Yang, J. J. ; Yang, X. ; Lv, P. F. ; Zhang, X. M. ; Priimagi, A. ; Wang, L. ; Xu, X. H. ; Li, Q . Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets . Angew. Chem. Int. Ed. , 2021 , 60 ( 7 ), 3390 – 3396 .
Lv, P. F. ; Yang, X. ; Bisoyi, H. K. ; Zeng, H. ; Zhang, X. ; Chen, Y. H. ; Xue, P. ; Shi, S. K. ; Priimagi, A. ; Wang, L. ; Feng, W. ; Li, Q . Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics . Mater. Horiz. , 2021 , 8 ( 9 ), 2475 – 2484 .
Wu, Y. C. ; Su, C. H. ; Wang, S. Y. ; Zheng, B. ; Mahjoubnia, A. ; Sattari, K. ; Zhang, H. W. ; Meister, J. ; Huang, G. L. ; Lin, J . A photocured bio-based shape memory thermoplastics for reversible wet adhesion . Chem. Eng. J. , 2023 , 470 , 144226 .
Wang, X. Y. ; Xue, P. ; Ma, S. S. ; Gong, Y. N. ; Xu, X. H . Polydopamine-modified MXene-integrated poly( N -isopropylacrylamide) to construct ultrafast photoresponsive bilayer hydrogel actuators with smart adhesion . ACS Appl. Mater. Interfaces , 2023 , 15 ( 42 ), 49689 – 49700 .
Moscardi, L. ; Lanzani, G. ; Paternò, G. M. ; Scotognella, F . Stimuli-responsive photonic crystals . Appl. Sci. , 2021 , 11 ( 5 ), 2119 .
Li, M. Z. ; Yuan, L. ; Liu, Y. F. ; Vogelbacher, F. ; Hou, X. Y. ; Song, Y. L. ; Cheng, Q. F . Bioinspired light-driven photonic crystal actuator with MXene-hydrogel muscle . Cell Rep. Phys. Sci. , 2022 , 3 ( 6 ), 100915 .
Sun, Z. C. ; Song, C. Y. ; Zhou, J. J. ; Hao, C. B. ; Liu, W. T. ; Liu, H. ; Wang, J. F. ; Huang, M. M. ; He, S. Q. ; Yang, M. C . Rapid photothermal responsive conductive MXene nanocomposite hydrogels for soft manipulators and sensitive strain sensors . Macromol. Rapid Commun. , 2021 , 42 ( 23 ), 2100499 .
Tomás, H. ; Alves, C. S. ; Rodrigues, J . Laponite®: a key nanoplatform for biomedical applications? Nanomed . Nanotechnol. Biol. Med. , 2018 , 14 ( 7 ), 2407 – 2420 .
Yan, Q. ; Ding, R. J. ; Zheng, H. W. ; Li, P. Y. ; Liu, Z. L. ; Chen, Z. ; Xiong, J. H. ; Xue, F. H. ; Zhao, X. ; Peng, Q. Y. ; He, X. D . Bio-inspired stimuli-responsive Ti 3 C 2 T x /PNIPAM anisotropic hydrogels for high-performance actuators . Adv. Funct. Mater. , 2023 , 33 ( 34 ), 2301982 .
Pi, M. H. ; Qin, S. H. ; Wen, S. H. ; Wang, Z. S. ; Wang, X. Y. ; Li, M. ; Lu, H. L. ; Meng, Q. D. ; Cui, W. ; Ran, R . Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication . Adv. Funct. Mater. , 2023 , 33 ( 1 ), 2210188 .
0
Views
215
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution