

浏览全部资源
扫码关注微信
上海交通大学化学化工学院,高分子科学与工程系,流变学研究所,上海 200240
Received:08 December 2024,
Accepted:2025-01-17,
Published Online:26 March 2025,
Published:20 May 2025
移动端阅览
徐家通, 周子愉, 廖晴雨, 张洪斌. 复杂流体屈服应力的测定: 理论、方法及应用. 高分子通报, 2025, 38(5), 689–717.
Xu, J. T.; Zhou, Z. Y.; Liao, Q. Y.; Zhang, H. B. Determination of yield stress in complex fluids: theory, methods and applications. Polym. Bull. (in Chinese), 2025, 38(5), 689–717.
徐家通, 周子愉, 廖晴雨, 张洪斌. 复杂流体屈服应力的测定: 理论、方法及应用. 高分子通报, 2025, 38(5), 689–717. DOI: 10.14028/j.cnki.1003-3726.2025.24.373.
Xu, J. T.; Zhou, Z. Y.; Liao, Q. Y.; Zhang, H. B. Determination of yield stress in complex fluids: theory, methods and applications. Polym. Bull. (in Chinese), 2025, 38(5), 689–717. DOI: 10.14028/j.cnki.1003-3726.2025.24.373.
多相多组分复杂流体,因其独特的流变学性质在科学研究和工业应用中占有重要地位。很多高分子的溶液、乳液、悬浮液、凝胶、填充体系等,都是典型的具有屈服行为的复杂流体,也称屈服应力流体。屈服应力是描述这类流体发生固-液转变时的最关键参数,对于理解其流变行为、加工和应用至关重要。尽管屈服应力的研究历史已经有数十年,但迄今仍有许多焦点问题有待解决和深入研究。屈服应力测定的理论、方法和应用场景一直处于不断发展中。特别是对于时间依赖的触变性屈服应力流体,其聚集态形式、热历史及剪切历史均在很大程度上影响其屈服应力的大小,对这类流体屈服应力的准确测定从理论到测试方法都充满挑战。本文综述了屈服应力流体的类别和屈服的形成机制,对现有各类流变模型以及测试方法进行了详细对比分析,还介绍了基于大振幅振荡剪切的应力分叉法和代数应力分叉法这2种屈服应力测定新方法以及二次屈服,着重指出了屈服应力测试中应考虑的科学性、合理性以及时间尺度问题。
Multi-phase multi-component complex fluids play an
important role in scientific research and industrial applications due to their unique rheological properties. Many polymer solutions
emulsions
suspensions
gels
filling systems
etc
.
are typical complex fluids with yield behavior
also known as yield stress fluids. The yield stress is the most critical parameter describing the solid-liquid transition that occurs in these fluids
and it is essential to understand their rheological behavior
processing
and applications. However
despite decades of research on the yield stress
many focal issues still need to be resolved and thoroughly investigated. Theories
methods
and application scenarios for yield stress determination have been constantly being developed. In particular
for time-dependent thixotropic yield stress fluids
the form of the aggregation state
thermal history
and shear history significantly affect the magnitude of the yield stress
and the accurate determination of the yield stress of such fluids is challenging from theory to test methods. In this review
the categories of yield stress fluids and the formation mechanism of yielding are reviewed
the existing rheological models and test methods are analyzed in detail
and the two new methods of yield stress determination of the stress bifurcation method and the algebraic stress bifurcation method based on large-amplitude oscillatory shear are introduced
as well as the secondary yield
which highlights the scientific
rational
and time scale issues that should be considered in the yield stress test.
Bonn, D. ; Denn, M. M. ; Berthier, L. ; Divoux, T. ; Manneville, S . Yield stress materials in soft condensed matter . Rev. Mod. Phys. , 2017 , 89 ( 3 ), 035005 .
Bonn, D. ; Denn, M. M . Yield stress fluids slowly yield to analysis . Science , 2009 , 324 ( 5933 ), 1401 – 1402 .
Dinkgreve, M. ; Paredes, J. ; Denn, M. M. ; Bonn, D . On different ways of measuring “the” yield stress . J. Non Newton. Fluid Mech. , 2016 , 238 , 233 – 241 .
Nguyen, Q. D. ; Boger, D. V . Measuring the flow properties of yield stress fluids . Annu. Rev. Fluid Mech. , 1992 , 24 , 47 – 88 .
Wei, Y. Y. ; Li, R. Q. ; Zhang, H. B . Measures of the yield stress fluids oriented for dysphagia management using steady-state shear, transient shear, and large-amplitude oscillatory shear (LAOS) . Phys. Fluids , 2022 , 34 ( 12 ), 123107 .
Barnes, H. A . A brief history of the yield stress . Appl. Rheol. , 1999 , 9 ( 6 ), 262 – 266 .
Nelson, A. Z. ; Schweizer, K. S. ; Rauzan, B. M. ; Nuzzo, R. G. ; Vermant, J. ; Ewoldt, R. H . Designing and transforming yield-stress fluids . Curr. Opin. Solid State Mater. Sci. , 2019 , 23 ( 5 ), 100758 .
Nelson, A. Z . The Soft Matter Kitchen: Improving the accessibility of rheology education and outreach through food materials . Phys. Fluids. , 2022 , 34 ( 3 ), 031801 .
Bingham, E. C . An investigation of the laws of plastic flow . Bull. Bur. Stand ., 1916 , 13 , 309 – 353 .
Sun, A. ; Gunasekaran, S . Yield stress in foods: measurements and applications . Int. J. Food Prop. , 2009 , 12 ( 1 ), 70 – 101 .
Ozkan, S. ; Gillece, T. W. ; Senak, L. ; Moore, D. J . Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes . Int. J. Cosmet. Sci. , 2012 , 34 ( 2 ), 193 – 201 .
Jung, J. ; Lee, B. K. ; Shin, S . Yield shear stress and disaggregating shear stress of human blood . Korea Aust. Rheol. J. , 2014 , 26 ( 2 ), 191 – 198 .
Balmforth, N. J. ; Frigaard, I. A. ; Ovarlez, G . Yielding to stress: Recent developments in viscoplastic fluid mechanics . Annu. Rev. Fluid Mech. , 2014 , 46 , 121 – 146 .
Donley, G. J. ; Singh, P. K. ; Shetty, A. ; Rogers, S. A . Elucidating the G″ overshoot in soft materials with a yield transition via a time-resolved experimental strain decomposition . Proc. Natl. Acad. Sci. USA , 2020 , 117 ( 36 ), 21945 – 21952 .
Kee, D. D . Yield stress measurement techniques: a review . Phys. Fluids. , 2021 , 33 ( 11 ), 111301 .
Barnes, H. A. ; Walters, K . The yield stress myth ? Rheol. Acta , 1985 , 24 ( 4 ), 323 – 326 .
Danesh, M. ; Moud, A. A. ; Mauran, D. ; Hojabr, S. ; Berry, R. ; Pawlik, M. ; Hatzikiriakos, S. G . The yielding of attractive gels of nanocrystal cellulose (CNC) . J. Rheol. , 2021 , 65 ( 5 ), 855 – 869 .
Zakani, B. ; Grecov, D . Yield stress analysis of cellulose nanocrystalline gels . Cellulose , 2020 , 27 ( 16 ), 9337 – 9353 .
Yang, K. ; Liu, Z. W. ; Wang, J. ; Yu, W . Stress bifurcation in large amplitude oscillatory shear of yield stress fluids . J. Rheol. , 2018 , 62 ( 1 ), 89 – 106 .
Ozawa, M. ; Berthier, L. ; Biroli, G. ; Rosso, A. ; Tarjus, G . Random critical point separates brittle and ductile yielding transitions in amorphous materials . Proc. Natl. Acad. Sci. USA , 2018 , 115 ( 26 ), 6656 – 6661 .
Larson, R. G. ; Wei, Y. F . A review of thixotropy and its rheological modeling . J. Rheol. , 2019 , 63 ( 3 ), 477 – 501 .
IUPAC. Compendium of chemical terminology, electronic version . http://goldbook.iupac.org.W06691.html http://goldbook.iupac.org.W06691.html , 2019 .
Mewis, J. ; Wagner, N. J . Thixotropy . Adv. Colloid Interface Sci. , 2009 , 147 , 214 – 227 .
Moller, P. ; Fall, A. ; Chikkadi, V. ; Derks, D. ; Bonn, D . An attempt to categorize yield stress fluid behaviour . Philos. Trans. A: Math. Phys. Eng. Sci. , 2009 , 367 ( 1909 ), 5139 – 5155 .
Xu, J. T. ; Wang, P. G. ; Yuan, B. H. ; Zhang, H. B . Rheology of cellulose nanocrystal and nanofibril suspensions . Carbohydr. Polym. , 2024 , 324 , 121527 .
Uhlherr, P. H. T. ; Guo, J. ; Tiu, C. ; Zhang, X. M. ; Zhou, J. Z. ; Fang, T. N . The shear-induced solid–liquid transition in yield stress materials with chemically different structures . J. Non Newton. Fluid Mech. , 2005 , 125 ( 2-3 ), 101 – 119 .
Li, X. B. ; Fang, Y. P. ; Zhang, H. B. ; Nishinari, K. ; Al-Assaf, S. ; Phillips, G. O . Rheological properties of gum Arabic solution: from Newtonianism to thixotropy . Food Hydrocoll. , 2011 , 25 ( 3 ), 293 – 298 .
Jin, Q. W. ; Cai, Z. X. ; Li, X. B. ; Yadav, M. P. ; Zhang, H. B . Comparative viscoelasticity studies: corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces . Food Hydrocoll. , 2017 , 64 , 85 – 98 .
Bird, R. B. ; Marsh, B. D . Viscoelastic hysteresis. Part I. Model predictions . Trans. Soc. Rheol. , 1968 , 12 ( 4 ), 479 – 488 .
Greener, J. ; Connelly, R. W . The response of viscoelastic liquids to complex strain histories: the thixotropic loop . J. Rheol. , 1986 , 30 ( 2 ), 285 – 300 .
Huang, S. X. ; Lu, C. J . The thixotropy-loop behaviors of an LDPE melt: experiment and simple analysis . J. Hydrodyn. Ser. B. , 2006 , 18 ( 6 ), 666 – 675 .
Cheng, X. ; Bai, X. W. ; Li, J. J. ; Chen, H. Z. ; Zhang, Y . Experimental observations of time-dependent behaviors for polycarbosilane melt . J. Appl. Polym. Sci. , 2011 , 120 ( 6 ), 3395 – 3400 .
Radhakrishnan, R. ; Divoux, T. ; Manneville, S. ; Fielding, S. M . Understanding rheological hysteresis in soft glassy materials . Soft Matter , 2017 , 13 ( 9 ), 1834 – 1852 .
Hunter, G. L. ; Weeks, E. R . The physics of the colloidal glass transition . Rep. Prog. Phys. , 2012 , 75 ( 6 ), 066501 .
Brambilla, G. ; El Masri, D. ; Pierno, M. ; Berthier, L. ; Cipelletti, L. ; Petekidis, G. ; Schofield, A. B . Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition . Phys. Rev. Lett. , 2009 , 102 ( 8 ), 085703 .
Pusey, P. N. ; van Megen, W . Observation of a glass transition in suspensions of spherical colloidal particles . Phys. Rev. Lett. , 1987 , 59 ( 18 ), 2083 – 2086 .
Petekidis, G. ; Vlassopoulos, D. ; Pusey, P. N . Yielding and flow of sheared colloidal glasses . J. Phys.: Condens. Matter , 2004 , 16 ( 38 ), S3955 – S3963 .
Torquato, S. ; Stillinger, F. H . Jammed hard-particle packings: from Kepler to bernal and beyond . Rev. Mod. Phys. , 2010 , 82 ( 3 ), 2633 – 2672 .
van Hecke, M . Jamming of soft particles: geometry, mechanics, scaling and isostaticity . J. Phys. Condens. Matter , 2010 , 22 ( 3 ), 033101 .
Paredes, J. ; Michels, M. A. J. ; Bonn, D . Rheology across the zero-temperature jamming transition . Phys. Rev. Lett. , 2013 , 111 ( 1 ), 015701 .
Royall, C. P. ; Poon, W. C. K. ; Weeks, E. R . In search of colloidal hard spheres . Soft Matter , 2013 , 9 ( 1 ), 17 – 27 .
Citerne, G. P. ; Carreau, P. J. ; Moan, M . Rheological properties of peanut butter . Rheol. Acta , 2001 , 40 ( 1 ), 86 – 96 .
Frigaard, I . Simple yield stress fluids . Curr. Opin. Colloid Interface Sci. , 2019 , 43 , 80 – 93 .
Tao, R. J. ; Tang, H. ; Tawhid-Al-Islam, K. ; Du, E. P. ; Kim, J . Electrorheology leads to healthier and tastier chocolate . Proc. Natl. Acad. Sci. USA , 2016 , 113 ( 27 ), 7399 – 7402 .
Dzuy, N. Q. ; Boger, D. V . Yield stress measurement for concentrated suspensions . J. Rheol. , 1983 , 27 ( 4 ), 321 – 349 .
Pashias, N. ; Boger, D. V. ; Summers, J. ; Glenister, D. J . A fifty cent rheometer for yield stress measurement . J. Rheol. , 1996 , 40 ( 6 ), 1179 – 1189 .
Uhlherr, P. ; Guo, J. ; Fang, T. ; Tiu, C . Static measurement of yield stress using a cylindrical penetrometer . Korea Aust. Rheol. J. , 2002 , 14 , 17 – 23 .
Meeten, G. H . Yield stress of structured fluids measured by squeeze flow . Rheol. Acta , 2000 , 39 ( 4 ), 399 – 408 .
Coussot, P. ; Boyer, S . Determination of yield stress fluid behaviour from inclined plane test . Rheol. Acta , 1995 , 34 ( 6 ), 534 – 543 .
Rohm, H . Rheological behaviour of butter at large deformations . J. Texture Stud. , 1993 , 24 ( 2 ), 139 – 155 .
李瑞琪 , 韦越 , 郭亚龙 , 蔡志祥 , 张洪斌 , 郭亨长 , 姚鹤忠 . 复杂流体的屈服应力及其测定与应用 . 中国制笔 , 2020 , 2, 21 – 31 .
Griebler, J. J. ; Rogers, S. A . The nonlinear rheology of complex yield stress foods . Phys. Fluids , 2022 , 34 ( 2 ), 023107 .
Fernandes, R. R. ; Andrade, D. E. ; Franco, A. T. ; Negrão, C. O . The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material . J. Rheol. , 2017 , 61 ( 5 ), 893 – 903 .
Fernandes, R. R. ; Andrade, D. E. V. ; Franco, A. T. ; Negrão, C. O. R . Correlation between the gel–liquid transition stress and the storage modulus of an oil-based drilling fluid . J. Non Newton. Fluid Mech. , 2016 , 231 , 6 – 10 .
Divoux, T. ; Barentin, C. ; Manneville, S . Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry . Soft Matter , 2011 , 7 ( 19 ), 9335 – 9349 .
Putz, A. M. V. ; Burghelea, T. I . The solid-fluid transition in a yield stress shear thinning physical gel . Rheol. Acta , 2009 , 48 ( 6 ), 673 – 689 .
Walls, H. J. ; Caines, S. B. ; Sanchez, A. M. ; Khan, S. A . Yield stress and wall slip phenomena in colloidal silica gels . J. Rheol. , 2003 , 47 ( 4 ), 847 – 868 .
Hyun, K. ; Wilhelm, M. ; Klein, C. O. ; Cho, K. S. ; Nam, J. G. ; Ahn, K. H. ; Lee, S. J. ; Ewoldt, R. H. ; McKinley, G. H . A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS) . Prog. Polym. Sci. , 2011 , 36 ( 12 ), 1697 – 1753 .
Wilhelm, M. ; Maring, D. ; Spiess, H. W . Fourier-transform rheology . Rheol. Acta , 1998 , 37 ( 4 ), 399 – 405 .
Cho, K. S. ; Hyun, K. ; Ahn, K. H. ; Lee, S. J . A geometrical interpretation of large amplitude oscillatory shear response . J. Rheol. , 2005 , 49 ( 3 ), 747 – 758 .
Wang, P. G. ; Xu, J. T. ; Zhang, H. B . Demonstration of a facile and efficient strategy for yield stress determination in large amplitude oscillatory shear: algebraic stress bifurcation . Phys. Fluids , 2023 , 35 ( 12 ), 123107 .
Wang, P. G. ; Zhou, Z. Y. ; Liao, Q. Y. ; Ren, H. M. ; Du, X. ; Zhang, H. B . The stress bifurcation and large amplitude oscillatory shear behavior of Kamani-Donley-Rogers model . Phys. Fluids. , 2025 , 37 ( 1 ), 013115 .
Ewoldt, R. H. ; Hosoi, A. E. ; McKinley, G. H . New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear . J. Rheol. , 2008 , 52 ( 6 ), 1427 – 1458 .
Yang, K. ; Yu, W . Dynamic wall slip behavior of yield stress fluids under large amplitude oscillatory shear . J. Rheol. , 2017 , 61 ( 4 ), 627 – 641 .
Saramito, P . A new constitutive equation for elastoviscoplastic fluid flows . J. Non Newton. Fluid Mech. , 2007 , 145 ( 1 ), 1 – 14 .
Giesekus, H . A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility . J. Non Newton. Fluid Mech. , 1982 , 11 ( 1-2 ), 69 – 109 .
Xu, J. T. ; Wang, P. G. ; Zhou, Z. Y. ; Yuan, B. H. ; Zhang, H. B . Nonlinear oscillatory rheology of aqueous suspensions of cellulose nanocrystals and nanofibrils . J. Rheol. , 2024 , 68 ( 4 ), 491 – 508 .
Wang, P. G. ; Liao, Q. Y. ; Ren, H. M. ; Zhou, Z. Y. ; Wang, Y. X. ; Ma, A. Q. ; Zhang, H. B . Dysphagia-oriented non-Newtonian flow analysis of mayonnaise on different timescales using large amplitude oscillatory shear (LAOS) models . Food Hydrocoll. , 2025 , 161 , 110867 .
Kamani, K. ; Donley, G. J. ; Rogers, S. A . Unification of the rheological physics of yield stress fluids . Phys. Rev. Lett. , 2021 , 126 ( 21 ), 218002 .
Divoux, T. ; Barentin, C. ; Manneville, S . From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids . Soft Matter , 2011 , 7 ( 18 ), 8409 – 8418 .
Ahuja, A. ; Potanin, A. ; Joshi, Y. M . Two step yielding in soft materials . Adv. Colloid Interface Sci. , 2020 , 282 , 102179 .
Pham, K. N. ; Petekidis, G. ; Vlassopoulos, D. ; Egelhaaf, S. U. ; Poon, W. C. K. ; Pusey, P. N . Yielding behavior of repulsion- and attraction-dominated colloidal glasses . J. Rheol. , 2008 , 52 ( 2 ), 649 – 676 .
Laurati, M. ; Egelhaaf, S. U. ; Petekidis, G . Nonlinear rheology of colloidal gels with intermediate volume fraction . J. Rheol. , 2011 , 55 ( 3 ), 673 – 706 .
Fernández-Toledano, J. C. ; Rodríguez-López, J. ; Shahrivar, K. ; Hidalgo-Álvarez, R. ; Elvira, L. ; Montero de Espinosa, F. ; de Vicente, J . Two-step yielding in magnetorheology . J. Rheol. , 2014 , 58 ( 5 ), 1507 – 1534 .
MacMillan, K. A. ; Royer, J. R. ; Morozov, A. ; Joshi, Y. M. ; Cloitre, M. ; Clegg, P. S . Rheological behavior and in situ confocal imaging of bijels made by mixing . Langmuir , 2019 , 35 ( 33 ), 10927 – 10936 .
Zakani, B. ; Ansari, M. ; Grecov, D . Dynamic rheological properties of a fumed silica grease . Rheol. Acta , 2018 , 57 ( 1 ), 83 – 94 .
Koumakis, N. ; Petekidis, G . Two step yielding in attractive colloids: transition from gels to attractive glasses . Soft Matter , 2011 , 7 ( 6 ), 2456 – 2470 .
Ahuja, A. ; Pappas, I. ; Potanin, A . Relation between structure and stability of toothpaste with two-step yielding . Rheol. Acta , 2020 , 59 ( 3 ), 133 – 145 .
Shukla, A. ; Arnipally, S. ; Dagaonkar, M. ; Joshi, Y. M . Two-step yielding in surfactant suspension pastes . Rheol. Acta , 2015 , 54 ( 5 ), 353 – 364 .
Rauzan, B. M. ; Nelson, A. Z. ; Lehman, S. E. ; Ewoldt, R. H. ; Nuzzo, R. G . Particle-free emulsions for 3D printing elastomers . Adv. Funct. Mater. , 2018 , 28 ( 21 ), 1707032 .
Wichchukit, S. ; McCarthy, M. J. ; McCarthy, K. L . Flow behavior of milk chocolate melt and the application to coating flow . J. Food Sci. , 2005 , 70 ( 3 ), E165 – E171 .
Briggs, J. L. ; Steffe, J. F. ; Ustunol, Z . Vane method to evaluate the yield stress of frozen ice cream . J. Dairy Sci. , 1996 , 79 ( 4 ), 527 – 531 .
Ma, L. ; Barbosa-Cánovas, G. V . Rheological characterization of mayonnaise. Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations . J. Food Eng. , 1995 , 25 ( 3 ), 409 – 425 .
He, H. L. ; Li, A. Q. ; Li, S. Q. ; Tang, J. ; Li, L. ; Xiong, L. D . Natural components in sunscreens: Topical formulations with Sun protection factor (SPF) . Biomed. Pharmacother. , 2021 , 134 , 111161 .
Rainer, C. ; Kawanishi, D. T. ; Chandraratna, P. A. ; Bauersachs, R. M. ; Reid, C. L. ; Rahimtoola, S. H. ; Meiselman, H. J . Changes in blood rheology in patients with stable angina pectoris as a result of coronary artery disease . Circulation , 1987 , 76 ( 1 ), 15 – 20 .
De Gruttola, S. ; Boomsma, K. ; Poulikakos, D . Computational simulation of a non-newtonian model of the blood separation process . Artif. Organs , 2005 , 29 ( 12 ), 949 – 959 .
Picart, C. ; Piau, J. M. ; Galliard, H. ; Carpentier, P . Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects . Biorheology , 1998 , 35 ( 4-5 ), 335 – 353 .
Picart, C. ; Carpentier, P. H. ; Galliard, H. ; Piau, J. M . Blood yield stress in systemic sclerosis . Am. J. Physiol. , 1999 , 276 ( 2 ), H771 – H777 .
Wang, W. X. ; Graziano, F. ; Russo, V. ; Ulm, A. J. ; De Kee, D. ; Khismatullin, D. B . Giant intracranial aneurysm embolization with a yield stress fluid material: Insights from CFD analysis . Biorheology , 2013 , 50 ( 3-4 ), 99 – 114 .
Skylar-Scott, M. A. ; Mueller, J. ; Visser, C. W. ; Lewis, J. A . Voxelated soft matter via multimaterial multinozzle 3D printing . Nature , 2019 , 575 ( 7782 ), 330 – 335 .
Hausmann, M. K. ; Rühs, P. A. ; Siqueira, G. ; Läuger, J. ; Libanori, R. ; Zimmermann, T. ; Studart, A. R . Dynamics of cellulose nanocrystal alignment during 3D printing . ACS Nano , 2018 , 12 ( 7 ), 6926 – 6937 .
Ayan, B. ; Celik, N. ; Zhang, Z. F. ; Zhou, K. ; Kim, M. H. ; Banerjee, D. ; Wu, Y. ; Costanzo, F. ; Ozbolat, I. T . Aspiration-assisted freeform bioprinting of pre-fabricated tissue spheroids in a yield-stress gel . Commun. Phys. , 2020 , 3 , 183 .
Bennington, C. P. J. ; Kerekes, R. J. ; Grace, J. R . The yield stress of fibre suspensions . Can. J. Chem. Eng. , 1990 , 68 ( 5 ), 748 – 757 .
Kerekes, R. J. ; Soszyński, R. M. ; Tam Doo, P. A . The flocculation of pulp fibres. In papermaking raw materials . Trans. VIIIth Fund. Res. Symp. Oxford , London : Mech. Eng. Publ. Ltd. , 1985 .
Moller, K . A correlation of pipe friction data for paper pulp suspensions . Ind. Eng. Chem. Proc. Des. Dev. , 1976 , 15 ( 1 ), 16 – 19 .
Solomon, J. ; Elson, T. P. ; Nienow, A. W. ; Pace, G. W . Cavern sizes in agitated fluids with a yield stress . Chem. Eng. Commun. , 1981 , 11 ( 1-3 ), 143 – 164 .
Møller, P. C. F. ; Mewis, J. ; Bonn, D . Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice . Soft Matter , 2006 , 2 ( 4 ), 274 – 283 .
Bertola, V. ; Bertrand, F. ; Tabuteau, H. ; Bonn, D. ; Coussot, P . Wall slip and yielding in pasty materials . J. Rheol. , 2003 , 47 ( 5 ), 1211 – 1226 .
Ewoldt, R. H. ; Johnston, M. T. ; Caretta, L. M . Experimental challenges of shear rheology: How to avoid bad data. In: Spagnolie, S. E. ed . Complex Fluids in Biological Systems . New York, NY : Springer New York , 2014 .
Song, J. ; Caggioni, M. ; Squires, T. M. ; Gilchrist, J. F. ; Prescott, S. W. ; Spicer, P. T . Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels . Bubble rheometer studies . Rheol. Acta , 2019 , 58 ( 5 ), 217 – 229 .
0
Views
41
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621