浏览全部资源
扫码关注微信
上海理工大学材料与化学学院,上海 200093
Received:06 February 2025,
Accepted:14 April 2025,
Published Online:05 June 2025,
Published:20 August 2025
移动端阅览
刘玉森, 王孟朝, 周迅, 岳兵兵. 基于多酚-金属离子催化系统的聚丙烯酰胺-羧甲基壳聚糖-木质素磺酸钠自愈合水凝胶摩擦纳米发电机. 高分子通报, 2025, 38(8), 1267–1279.
Liu, Y. S.; Wang, M. C.; Zhou, X.; Yue, B. B. Polyacrylamide-Carboxymethyl Chitosan-Sodium Ligninsulfonate Self-healing Hydrogels Based on Polyphenol-metal Ion Catalytic System in Triboelectric Nanogenerators. Polym. Bull. (in Chinese), 2025, 38(8), 1267–1279.
刘玉森, 王孟朝, 周迅, 岳兵兵. 基于多酚-金属离子催化系统的聚丙烯酰胺-羧甲基壳聚糖-木质素磺酸钠自愈合水凝胶摩擦纳米发电机. 高分子通报, 2025, 38(8), 1267–1279. DOI: 10.14028/j.cnki.1003-3726.2025.25.039.
Liu, Y. S.; Wang, M. C.; Zhou, X.; Yue, B. B. Polyacrylamide-Carboxymethyl Chitosan-Sodium Ligninsulfonate Self-healing Hydrogels Based on Polyphenol-metal Ion Catalytic System in Triboelectric Nanogenerators. Polym. Bull. (in Chinese), 2025, 38(8), 1267–1279. DOI: 10.14028/j.cnki.1003-3726.2025.25.039.
水凝胶摩擦纳米发电机(H-TENG)因其卓越的机械柔韧性和导电性,成为可穿戴电子产品领域备受人们关注的柔性材料器件。然而,水凝胶在传统聚合过程中存在的高能耗与耗时缺陷,以及极端环境或机械损伤下电学性能衰减与力学失效问题,严重制约了H-TENG的实际应用。针对上述问题,开发了一种基于多酚-金属离子催化系统的自愈合双网络水凝胶,适用于水凝胶传感器和H-TENG。该材料体系通过动态氧化还原反应与Fe
3+
-木质素磺酸钠(SLS)金属配位协同作用,实现了PAM-CMC双网络结构水凝胶的室温快速交联,无需外加热引发。同时,双网络结构及其动态配位键与氢键的协同能量耗散机制赋予了水凝胶优异的机械性能和自愈合特性。作为水凝胶传感器和H-TENG表现出稳健的传感性能和优异的自供电行为。本研究为具有可靠输出性能和传感特性的环境适应性自愈合H-TENG提供了一个应用前景广泛的材料体系。
Hydrogel-based triboelectric nanogenerators (H-TENG) have emerged as promising flexible devices for wearable electronics owing to their notable mechanical flexibili
ty and electrical conductivity. However
the high energy consumption and time-intensive nature of conventional hydrogel polymerization processes
combined with the degradation of electrical properties and mechanical failure under extreme mechanical or environmental conditions
have severely limited their practical application. To address these challenges
this study presents a self-healing dual-network hydrogel engineered
via
a polyphenol-metal ion catalytic system for hydrogel sensors and H-TENG. The hydrogel is synthesized through dynamic redox reactions and metal-ligand coordination
utilizing sodium lignin sulfonate (SLS) and Fe
3+
ions
which enable the rapid crosslinking of a polyacrylamide-carboxymethyl cellulose (PAM-CMC) dual-network hydrogel without energy-intensive thermal polymerization. The synergistic integration of dynamic metal coordination and hydrogen bonding confers the hydrogel with enhanced mechanical properties and autonomous self-healing capabilities. As a multifunctional platform
the material demonstrated stable strain-sensing responsiveness and consistent triboelectric output
even after severe mechanical damage. This study establishes an environmentally adaptive hydrogel system for self-healing H-TENG
exhibiting reliable performance across broad applications.
Mo, F. N. ; Liang, G. J. ; Meng, Q. Q. ; Liu, Z. X. ; Li, H. F. ; Fan, J. ; Zhi, C. Y . A flexible rechargeable aqueous zinc manganese-dioxide battery working at –20 ℃ . Energy Environ. Sci. , 2019 , 12 ( 2 ), 706 – 715 .
Wang, Y. K. ; Chen, F. ; Liu, Z. X. ; Tang, Z. J. ; Yang, Q. ; Zhao, Y. ; Du, S. Y. ; Chen, Q. ; Zhi, C. Y . A highly elastic and reversibly stretchable all-polymer supercapacitor . Angew. Chem. Int. Ed. , 2019 , 58 ( 44 ), 15707 – 15711 .
李颀 , 王丽华 , 樊春海 , 叶德楷 . DNA水凝胶的构建及柔性电子应用 . 高分子学报 , 2024 , 55 ( 6 ), 655 – 672 .
Seung, W. ; Gupta, M. K. ; Lee, K. Y. ; Shin, K. S. ; Lee, J. H. ; Kim, T. Y. ; Kim, S. ; Lin, J. J. ; Kim, J. H. ; Kim, S. W . Nanopatterned textile-based wearable triboelectric nanogenerator . ACS Nano , 2015 , 9 ( 4 ), 3501 – 3509 .
Chen, J. ; Huang, Y. ; Zhang, N. N. ; Zou, H. Y. ; Liu, R. Y. ; Tao, C. Y. ; Fan, X. ; Wang, Z. L . Micro-cable structured textile for simultaneously harvesting solar and mechanical energy . Nat. Energy , 2016 , 1 , 16138 .
Peng, Q. Y. ; Chen, J. S. ; Wang, T. ; Peng, X. W. ; Liu, J. F. ; Wang, X. G. ; Wang, J. M. ; Zeng, H. B . Recent advances in designing conductive hydrogels for flexible electronics . InfoMat , 2020 , 2 ( 5 ), 843 – 865 .
Liang, Y. Z. ; Ye, L. N. ; Sun, X. Y. ; Lv, Q. ; Liang, H. Y . Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors . ACS Appl. Mater. Interfaces , 2020 , 12 ( 1 ), 1577 – 1587 .
Shi, Y. L. ; Tang, Z. R. ; Li, C. Z. ; Miao, Y. Q. ; Zhu, L. L. ; Yue, B. B . Conductive hydrogel systems enabling rapid and controllable release of guests at low-voltage region . Small , 2025 , 21 ( 7 ), 2410120 .
Sun, J. X. ; Lu, G. Q. ; Zhou, J. L. ; Yuan, Y. X. ; Zhu, X. Q. ; Nie, J . Robust physically linked double-network ionogel as a flexible bimodal sensor . ACS Appl. Mater. Interfaces , 2020 , 12 ( 12 ), 14272 – 14279 .
Deng, Z. X. ; Wang, H. ; Ma, P. X. ; Guo, B. L . Self-healing conductive hydrogels: Preparation, properties and applications . Nanoscale , 2020 , 12 ( 3 ), 1224 – 1246 .
Ji, Z. Y. ; Wang, H. ; Chen, Z. ; Wang, P. P. ; Liu, J. ; Wang, J. Q. ; Hu, M. M. ; Fei, J. B. ; Nie, N. Y. ; Huang, Y . A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery . Energy Storage Mater. , 2020 , 28 , 334 – 341 .
Xu, X. W. ; Jerca, V. V. ; Hoogenboom, R . Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels . Mater. Horiz. , 2021 , 8 ( 4 ), 1173 – 1188 .
Ali Darabi, M. ; Khosrozadeh, A. ; Mbeleck, R. ; Liu, Y. Q. ; Chang, Q. ; Jiang, J. Z. ; Cai, J. ; Wang, Q. ; Luo, G. X. ; Xing, M . Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability . Adv. Mater. , 2017 , 29 ( 31 ), 1700533 .
Pan, J. Z. ; Jin, Y. ; Lai, S. Q. ; Shi, L. J. ; Fan, W. H. ; Shen, Y. C . An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking . Chem. Eng. J. , 2019 , 370 , 1228 – 1238 .
Zhang, Y. F. ; Xu, Z. S. ; Yuan, Y. ; Liu, C. Y. ; Zhang, M. ; Zhang, L. Q. ; Wan, P. B . Flexible antiswelling photothermal-therapy MXene hydrogel-based epidermal sensor for intelligent human–machine interfacing . Adv. Funct. Mater. , 2023 , 33 ( 21 ), 2300299 .
Rahman, M. T. ; Rahman, M. S. ; Kumar, H. ; Kim, K. ; Kim, S . Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human-machine interfaces . Adv. Funct. Mater. , 2023 , 33 ( 48 ), 2303471 .
Liu, X. ; Chen, L. ; Sufu, A. ; Liu, F . Stretchable and self-healing carboxymethyl cellulose/polyacrylic acid conductive hydrogels for monitoring human motions and electrophysiological signals . Int J Biol Macromol , 2025 , 293 , 138900 .
Cheng, T. ; Zhang, Y. Z. ; Wang, S. ; Chen, Y. L. ; Gao, S. Y. ; Wang, F. ; Lai, W. Y. ; Huang, W . Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors . Adv. Funct. Mater. , 2021 , 31 ( 24 ), 2101303 .
Qi, M. ; Yang, R. Q. ; Wang, Z. ; Liu, Y. T. ; Zhang, Q. C. ; He, B. ; Li, K. W. ; Yang, Q. ; Wei, L. ; Pan, C. F. ; Chen, M. X . Bioinspired self-healing soft electronics . Adv. Funct. Mater. , 2023 , 33 ( 17 ), 2214479 .
Wang, Z. ; Xu, X. Y. ; Tan, R. J. ; Zhang, S. ; Zhang, K. ; Hu, J. L . Hierarchically structured hydrogel composites with ultra-high conductivity for soft electronics . Adv. Funct. Mater. , 2024 , 34 ( 16 ), 2312667 .
Wang, Z. ; Xu, X. Y. ; Zhang, K. ; Tan, R. J. ; Zhang, S. ; Su, Y. P. ; Hu, J. L . Continuous phase separation induced tough hydrogel fibers with ultrahigh conductivity for multidimensional soft electronics . Adv. Funct. Mater. , 2025 , 35 ( 3 ), 2413478 .
Lin, F. C. ; Yang, W. S. ; Lu, B. L. ; Xu, Y. L. ; Chen, J. P. ; Zheng, X. X. ; Liu, S. Y. ; Lin, C. S. ; Zeng, H. B. ; Huang, B . Muscle-inspired robust anisotropic cellulose conductive hydrogel for multidirectional strain sensors and implantable bioelectronics . Adv. Funct. Mater. , 2025 , 35 ( 10 ), 2416419 .
Alizadeh, R. ; Zarrintaj, P. ; Kamrava, S. K. ; Bagher, Z. ; Farhadi, M. ; Heidari, F. ; Komeili, A. ; Gutiérrez, T. J. ; Saeb, M. R . Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy . Carbohydr. Polym. , 2019 , 224 , 115161 .
Zhang, Y. L. ; Chen, K. X. ; Li, Y. S. ; Lan, J. ; Yan, B. ; Shi, L. Y. ; Ran, R . High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor . ACS Appl. Mater. Interfaces , 2019 , 11 ( 50 ), 47350 – 47357 .
Pan, X. F. ; Wang, Q. H. ; Guo, R. S. ; Ni, Y. H. ; Liu, K. ; Ouyang, X. H. ; Chen, L. H. ; Huang, L. L. ; Cao, S. L. ; Xie, M. Y . An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels . J. Mater. Chem. A , 2019 , 7 ( 9 ), 4525 – 4535 .
Yuk, H. ; Zhang, T. ; Lin, S. T. ; Parada, G. A. ; Zhao, X. H . Tough bonding of hydrogels to diverse non-porous surfaces . Nat. Mater. , 2015 , 15 ( 2 ), 190 – 196 .
Jia, Z. R. ; Zeng, Y. ; Tang, P. F. ; Gan, D. L. ; Xing, W. S. ; Hou, Y. ; Wang, K. F. ; Xie, C. M. ; Lu, X . Conductive, tough, transparent, and self-healing hydrogels based on catechol–metal ion dual self-catalysis . Chem. Mater. , 2019 , 31 ( 15 ), 5625 – 5632 .
Xu, J. ; Wang, Z. B. ; You, J. ; Li, X. K. ; Li, M. J. ; Wu, X. C. ; Li, C. X . Polymerization of moldable self-healing hydrogel with liquid metal nanodroplets for flexible strain-sensing devices . Chem. Eng. J. , 2020 , 392 , 123788 .
Guo, J. L. ; Ping, Y. ; Ejima, H. ; Alt, K. ; Meissner, M. ; Richardson, J. J. ; Yan, Y. ; Peter, K. ; von Elverfeldt, D. ; Hagemeyer, C. E. ; Caruso, F . Engineering multifunctional capsules through the assembly of metal–phenolic networks . Angew. Chem. Int. Ed. , 2014 , 53 ( 22 ), 5546 – 5551 .
Shao, C. Y. ; Wang, M. ; Meng, L. ; Chang, H. L. ; Wang, B. ; Xu, F. ; Yang, J. ; Wan, P. B . Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties . Chem. Mater. , 2018 , 30 ( 9 ), 3110 – 3121 .
谭魏葳 , 雷苏苏 , 龙涛 , 徐志朗 , 李德富 , 穆畅道 , 葛黎明 . 具有葡萄糖响应性释药的多糖基可注射自愈合水凝胶 . 高分子学报 , 2023 , 54 ( 8 ), 1155 – 1165 .
Ejima, H. ; Oba, A. ; Yoshie, N . Tuning the mechanical properties of bioinspired catechol polymers by incorporating dual coordination bonds . J. Photopol. Sci. Technol. , 2018 , 31 ( 1 ), 75 – 80 .
张亚玲 , 杨斌 , 许亮鑫 , 张小勇 , 陶磊 , 危岩 . 基于动态化学的自愈性水凝胶及其在生物医用材料中的应用研究展望 . 化学学报 , 2013 , 71 ( 4 ), 485 – 492 .
Zhang, X. ; Liu, W. F. ; Cai, J. Q. ; Huang, J. H. ; Qiu, X. Q . Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance . J. Mater. Chem. A , 2019 , 7 ( 47 ), 26917 – 26926 .
Gan, D. L. ; Xing, W. S. ; Jiang, L. L. ; Fang, J. ; Zhao, C. C. ; Ren, F. Z. ; Fang, L. M. ; Wang, K. F. ; Lu, X . Plant-inspired adhesive and tough hydrogel based on Ag-lignin nanoparticles-triggered dynamic redox catechol chemistry . Nat. Commun. , 2019 , 10 ( 1 ), 1487 .
Song, Y. T. ; Niu, L. ; Ma, P. L. ; Li, X. ; Feng, J. ; Liu, Z. M . Rapid preparation of antifreezing conductive hydrogels for flexible strain sensors and supercapacitors . ACS Appl. Mater. Interfaces , 2023 , 15 ( 7 ), 10006 – 10017 .
Feng, Y. F. ; Yu, J. ; Sun, D. ; Dang, C. ; Ren, W. F. ; Shao, C. Y. ; Sun, R. C . Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing . Nano Energy , 2022 , 98 , 107284 .
Hamcerencu, M. ; Desbrieres, J. ; Khoukh, A. ; Popa, M. ; Riess, G . Synthesis and characterization of new unsaturated esters of Gellan Gum . Carbohydr. Polym. , 2008 , 71 ( 1 ), 92 – 100 .
Yang, C. H. ; Wang, M. X. ; Haider, H. ; Yang, J. H. ; Sun, J. Y. ; Chen, Y. M. ; Zhou, J. X. ; Suo, Z. G . Strengthening alginate/polyacrylamide hydrogels using various multivalent cations . ACS Appl. Mater. Interfaces , 2013 , 5 ( 21 ), 10418 – 10422 .
Wei, J. J. ; Xie, J. J. ; Zhang, P. C. ; Zou, Z. Y. ; Ping, H. ; Wang, W. M. ; Xie, H. ; Shen, J. Z. ; Lei, L. W. ; Fu, Z. Y . Bioinspired 3D printable, self-healable, and stretchable hydrogels with multiple conductivities for skin-like wearable strain sensors . ACS Appl. Mater. Interfaces , 2021 , 13 ( 2 ), 2952 – 2960 .
Luo, J. J. ; Wang, Z. M. ; Xu, L. ; Wang, A. C. ; Han, K. ; Jiang, T. ; Lai, Q. S. ; Bai, Y. ; Tang, W. ; Fan, F. R. ; Wang, Z. L . Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics . Nat. Commun. , 2019 , 10 ( 1 ), 5147 .
Chen, S. ; Huang, T. ; Zuo, H. ; Qian, S. H. ; Guo, Y. F. ; Sun, L. J. ; Lei, D. ; Wu, Q. L. ; Zhu, B. ; He, C. L. ; Mo, X. M. ; Jeffries, E. ; Yu, H. ; You, Z. W . A single integrated 3D-printing process customizes elastic and sustainable triboelectric nanogenerators for wearable electronics . Adv. Funct. Mater. , 2018 , 28 ( 46 ), 1805108 .
Wang, S. H. ; Lin, L. ; Wang, Z. L . Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics . Nano Lett. , 2012 , 12 ( 12 ), 6339 – 6346 .
Yang, Y. ; Zhang, H. L. ; Chen, J. ; Jing, Q. S. ; Zhou, Y. S. ; Wen, X. N. ; Wang, Z. L . Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system . ACS Nano , 2013 , 7 ( 8 ), 7342 – 7351 .
Wang, S. H. ; Xie, Y. N. ; Niu, S. M. ; Lin, L. ; Wang, Z. L . Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes . Adv. Mater. , 2014 , 26 ( 18 ), 2818 – 2824 .
Wang, S. H. ; Lin, L. ; Xie, Y. N. ; Jing, Q. S. ; Niu, S. M. ; Wang, Z. L . Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism . Nano Lett. , 2013 , 13 ( 5 ), 2226 – 2233 .
Shi, G. G. ; Xiong, J. M. ; Wu, W. J. ; Guo, Z. Y. ; Wang, S. ; Mao, J . High-strength conductive hydrogels based on the Hofmeister effect for friction nanogenerators . Mater. Today Chem. , 2024 , 40 , 102266 .
Long, K. X. ; Zhang, Y. Z. ; Gao, X. Y. ; Li, J. X. ; Luo, Y. C. ; Huang, M. K. ; Mao, Y. Q. ; Hu, C. X. ; Guo, S. S . A flexible, conductive hydrogel for strain sensor and triboelectric nanogenerator toward human motion monitoring . ACS Appl. Electron. Mater. , 2024 , acsaelm.4c00152 .
Zeng, H. J. ; University, J. ; Zhang, L. B. ; University, J. ; Wu, T. ; University, J. ; Song, H. J. ; University, J. ; Wan, Y. ; University, Z. S. ; Zhang, M. Q. ; University, J . High-performance conductive hydrogel prepared by an electrohydrodynamic printing method for strain sensors and self-powered triboelectric nanogenerator . ACS Appl. Nano Mater. , 2025 , 8 ( 1 ), 589 – 601 .
Li, G. X. ; Li, L. W. ; Zhang, P. P. ; Chang, C. Y. ; Xu, F. ; Pu, X . Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing . RSC Adv. , 2021 , 11 ( 28 ), 17437 – 17444 .
Xiao, Y. N. ; Li, Z. H. ; Xu, B. G . Flexible triboelectric nanogenerators based on hydrogel/g-C 3 N 4 composites for biomechanical energy harvesting and self-powered sensing . ACS Appl. Mater. Interfaces , 2024 , 16 ( 11 ), 13674 – 13684 .
0
Views
50
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution