

浏览全部资源
扫码关注微信
1.西南科技大学材料与化学学院,绵阳 621010
2.中国工程物理研究院化工材料研究所,绵阳 621900
3.西南科技大学生物质材料教育部工程研究中心,绵阳 621010
Received:11 July 2025,
Accepted:16 September 2025,
Published Online:06 November 2025,
Published:20 December 2025
移动端阅览
罗善双, 陈可平, 陈原, 孙毅, 肖培双. 顺丁烯二酸酐的水解动力学及其对环氧树脂固化行为的影响. 高分子通报, 2025, 38(12), 1835–1845.
Luo, S. S.; Chen, K. P.; Chen, Y.; Sun, Y.; Xiao, P. S. Kinetics of maleic anhydride hydrolysis and its influence on the curing behavior of epoxy resin. Polym. Bull. (in Chinese), 2025, 38(12), 1835–1845.
罗善双, 陈可平, 陈原, 孙毅, 肖培双. 顺丁烯二酸酐的水解动力学及其对环氧树脂固化行为的影响. 高分子通报, 2025, 38(12), 1835–1845. DOI: 10.14028/j.cnki.1003-3726.2025.25.195.
Luo, S. S.; Chen, K. P.; Chen, Y.; Sun, Y.; Xiao, P. S. Kinetics of maleic anhydride hydrolysis and its influence on the curing behavior of epoxy resin. Polym. Bull. (in Chinese), 2025, 38(12), 1835–1845. DOI: 10.14028/j.cnki.1003-3726.2025.25.195.
酸酐在潮湿环境中的水解反应对其在材料科学、有机合成以及工业应用中的稳定性有着至关重要的影响。本工作采用傅里叶红外光谱仪,实时监测顺丁烯二酸酐(MA)在水解过程中酸酐基团的变化,采用非等温示差扫描量热法(DSC)等手段研究了顺丁烯二酸酐的水解程度对环氧树脂固化行为的影响。实验结果表明,在水分子的作用下,酸酐会逐渐转化生成羧酸,其水解动力学符合一级反应动力学的特征;相较于未水解的顺丁烯二酸酐,水解的顺丁烯二酸酐更容易在较低的温度下实现环氧树脂的固化,且固化行为符合Sestak-Berggren动力学模型(SB(
m
,
n
))。但力学性能和动态热机械性能的结果表明,水解的顺丁烯二酸酐固化的环氧树脂的拉伸强度降低了14.3%,玻璃化转变温度降低了18 ℃,其原因是水解的顺丁烯二酸酐与环氧树脂形成更多的线型链段结构,使固化后的环氧树脂的交联结构变得稀疏,进一步导致拉伸强度和玻璃化转变温度的降低。
The hydrolysis of anhydrides in moist environments has a considerable impact on their stability in diverse fields including materials science
organic synthesis
and industrial applications. Fourier transform infrared spectroscopy (FTIR) was employed to track the transformation of the anhydride group during the hydrolysis process of maleic anhydride (MA). The impact of the degree of MA hydrolysis on the curing characteristics of epoxy resin was investigated using non-isothermal differential scanning calorimetry (DSC). Experimental results showed that acid
anhydride can be transformed into carboxylic acid gradually under the action of water molecule
the hydrolysis kinetics conform to the characteristics of first-order reaction kinetics; Hydrolyzed maleic anhydride exhibits enhanced curing efficiency for epoxy resin compared to unhydrolyzed maleic anhydride
particularly at reduced temperatures. The curing process follows the Sestak-Berggren kinetic model SB(
m
n
). Nevertheless
assessments of mechanical and dynamic thermomechanical properties reveal a decline in tensile strength by 14.3% and a reduction in the glass transition temperature by 18 ℃ for epoxy resin cured with hydrolyzed maleic anhydride. This phenomenon can be attributed to the formation of more linear chain structures between hydrolyzed maleic anhydride and epoxy resin. Consequently
the resulting sparse crosslinked structure of the cured epoxy resin contributes to the observed decreases in tensile strength and glass transition temperature.
Ruan, K. P. ; Zhong, X. ; Shi, X. T. ; Dang, J. J. ; Gu, J. W . Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review . Mater. Today Phys . , 2021 , 20 , 100456 .
Bian, W. C. ; Yao, T. ; Chen, M. ; Zhang, C. ; Shao, T. ; Yang, Y . The synergistic effects of the micro-BN and nano-Al 2 O 3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin . Compos. Sci. Technol . , 2018 , 168 , 420 – 428 .
Liang, L. ; Feng, Y. ; Yang, K. L. ; Zhang, Z. H. ; Chen, Q. G . Thermally conductive h-BN/EP composites oriented by AC electric field induction . Int. J. Heat Mass Transf . , 2024 , 225 , 125397 .
Feng, Y. ; Zhang, Z. ; Yue, D. ; Belko, V. O. ; Maksimenko, S. A. ; Deng, J. ; Sun, Y. ; Yang, Z. ; Fu, Q. ; Liu, B. X. ; Chen, Q. G . Recent progress in degradation and recycling of epoxy resin . J. Mater. Res. Technol . , 2024 , 32 , 2891 – 2912 .
Xu, X. W. ; Ma, S. Q. ; Wu, J. H. ; Yang, J. T. ; Wang, B. B. ; Wang, S. ; Li, Q. ; Feng, J. ; You, S. S. ; Zhu, J . High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties . J. Mater. Chem. A , 2019 , 7 ( 25 ), 15420 – 15431 .
Anagwu, F. I. ; Skordos, A. A . Cure kinetics, glass transition advancement and chemo-rheological modelling of an epoxy vitrimer based on disulphide metathesis . Polymer , 2023 , 288 , 126427 .
Sheng, Q. ; Chen, Q. H. ; Gu, W. W. ; Wang, R. C. ; Gu, X. Y. ; Liu, J. ; Sun, T. B. ; Chen, Y. ; Sun, J. ; Zhang, S . The study of curing behavior and thermo-mechanical properties of epoxy adhesives with different anhydrides . Polymer , 2024 , 307 , 127342 .
Yang, Z. ; Peng, H. D. ; Wang, W. Z. ; Liu, T. X . Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites . J. Appl. Polym. Sci . , 2010 , 116 ( 5 ), 2658 – 2667 .
Gu, H. B. ; Guo, J. ; Wei, H. G. ; Yan, X. R. ; Ding, D. W. ; Zhang, X. ; He, Q. L. ; Tadakamalla, S. ; Wang, X. F. ; Ho, T. C. ; Wei, S. Y. ; Guo, Z. H . Transparent anhydride-cured epoxy nanocomposites reinforced with polyaniline stabilized nanosilica . J. Mater. Chem. C , 2015 , 3 ( 31 ), 8152 – 8165 .
Mohanta, S. ; Sankhla, S. ; Namboothiri, K. K. ; Kuppusamy, R. R. P. ; Neogi, S . Insights into anhydride-cured epoxy resin system using dynamic chemo-rheological modeling . Polym. Bull . , 2023 , 80 ( 12 ), 13299 – 13317 .
Hirota, W. H. ; Rodrigues, R. B. ; Sayer, C. ; Giudici, R . Hydrolysis of acetic anhydride: non-adiabatic calorimetric determination of kinetics and heat exchange . Chem. Eng. Sci . , 2010 , 65 ( 12 ), 3849 – 3858 .
Glasser D, H. D . Kinetic modeling of the hydrolysis of acetic anhydride at higher temperatures using adiabatic batch reactor (thermos-flask) . J. Chem. Eng. Process. Technol . , 2013 , 4 ( 9 ), 1000176 .
王朔 , 贾晨辉 , 杨智明 , 姚亚琳 . 含水量对环氧/酸酐树脂性能的影响及解决措施研究 . 复合材料科学与工程 , 2025 , ( 2 ), 28 – 33 .
Anusic, A. ; Resch-Fauster, K. ; Mahendran, A. R. ; Wuzella, G . Anhydride cured bio-based epoxy resin: effect of moisture on thermal and mechanical properties . Macromol. Mater. Eng . , 2019 , 304 ( 7 ), 1900031 .
Kralj, A. K . Checking the kinetics of acetic acid production by measuring the conductivity . J. Ind. Eng. Chem . , 2007 , 13 , 631 – 636 .
Torraga, M. G. F. ; Colmán, M. M. E. ; Giudici, R . Hydrolysis of acetic anhydride: In situ , real-time monitoring using NIR and UV-Vis spectroscopy . Chem. Eng. Sci . , 2019 , 210 , 115244 .
Guo, Z. C. ; Feng, W. ; Shao, X. Y. ; Chen, W. H . Insights into reaction kinetics and autocatalysis behavior of propionic anhydride hydrolysis using real-time reaction calorimetry method . J. Therm. Anal. Calorim . , 2023 , 148 ( 18 ), 9585 – 9596 .
Faggio, N. ; Marotta, A. ; Ambrogi, V. ; Cerruti, P. ; Gentile, G . Fully bio-based furan/maleic anhydride epoxy resin with enhanced adhesive properties . J. Mater. Sci . , 2023 , 58 ( 16 ), 7195 – 7208 .
李秉海 . 甲基纳迪克酸酐固化环氧树脂的动力学研究 . 塑料科技 , 2023 , 51 ( 1 ), 65 – 68 .
Hao, C. ; Liu, T. ; Zhang, S. ; Liu, W. C. ; Shan, Y. F. ; Zhang, J. W . Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling . Macromolecules , 2020 , 53 ( 8 ), 3110 – 3118 .
胡岚方 , 张兴宏 . 有机小分子催化环醚与环状酸酐共聚研究进展 . 功能高分子学报 , 2019 , 32 ( 3 ), 259 – 270 .
Zhang, X. F. ; Wu, Y. ; Wei, J. H. ; Tong, J. F. ; Yi, X. S . Curing kinetics and mechanical properties of bio-based composite using rosin-sourced anhydrides as curing agent for hot-melt prepreg . Sci. China Technol. Sci . , 2017 , 60 ( 9 ), 1318 – 1331 .
Starink, M. J . Analysis of hydrogen desorption from linear heating experiments: accuracy of activation energy determinations . Int. J. Hydrog. Energy , 2018 , 43 ( 13 ), 6632 – 6641 .
Singh, B. ; Singh, S. ; Kumar, P . In-depth analyses of kinetics, thermodynamics and solid reaction mechanism for pyrolysis of hazardous petroleum sludge based on isoconversional models for its energy potential . Process. Saf. Environ. Prot . , 2021 , 146 , 85 – 94 .
Singh, A. K. ; Parikh, P. C. ; Chakraborty, J. P . Pyrolysis of acacia nilotica bark: estimation of kinetic and thermodynamic parameters using model-free isoconversional methods . Therm. Sci. Eng. Prog . , 2025 , 61 , 103525 .
Pal, D. B. ; Tiwari, A. K. ; Prasad, N. ; Srivastava, N. ; Almalki, A. H. ; Haque, S. ; Gupta, V. K . Thermo-chemical potential of solid waste seed biomass obtained from plant Phoenix dactylifera and Aegle marmelos L. Fruit core cell . Bioresour. Technol . , 2022 , 345 , 126441 .
Deborah, H. ; Tobias, T. ; Sindhu, N. B. ; Nur, A. K. ; Thomas, K. ; Sarah, K. ; Frank-Jürgen, M. ; Matthias, R . Malt roasting quality control by mid-infrared spectroscopy . J. Brew. Distilling , 2021 , 10 ( 1 ), 1 – 16 .
Schramm, C. ; Rinderer, B . Investigation of the hydrolysis of (3-triethoxysilylpropyl)succinic acid anhydride by means of FT-IR . J. Mater. Sci . , 2008 , 43 ( 12 ), 4215 – 4219 .
Pervaje, A. K. ; Tilly, J. C. ; Detwiler, A. T. ; Spontak, R. J. ; Khan, S. A. ; Santiso, E. E . Molecular simulations of thermoset polymers implementing theoretical kinetics with top-down coarse-grained models . Macromolecules , 2020 , 53 ( 7 ), 2310 – 2322 .
Song, X. J. ; Luo, Y. J . Curing kinetics study on interpenetrating polymer networks based on modified hyperbranched polyether/polyurethane . Monatsh. Für Chem. Chem. Mon . , 2017 , 148 ( 7 ), 1323 – 1328 .
Ma, Z. L. ; Qi, L. ; He, W. ; He, L. M . A novel approach on the study of cure kinetics for rheological isothermal and non-isothermal methods . Compos. Part B Eng . , 2019 , 162 , 242 – 249 .
Zhou, Y. X. ; Tian, H. ; Mei, Z. H. ; Liao, Y. ; Wang, M . Catalytic liquefaction of starch by sulfamic acid and its curing kinetics for preparing polyurethane . J. Therm. Anal. Calorim . , 2023 , 148 ( 24 ), 13851 – 13858 .
Sun, H. G. ; Sun, G. ; Lv, H. ; Liu, Y. ; Zhao, B. Y. ; Zhu, N. ; Hu, K. A . DSC study on the effect of cure reagents on the lignin base epoxy cure reaction . J. Appl. Polym. Sci . , 2007 , 105 ( 4 ), 2332 – 2338 .
Guimarães, B. S. S. ; Guiguer, E. L. ; Bianchi, O. ; Canto, L. B . Non-isothermal cure kinetics of an anhydride-cured cycloaliphatic/aromatic epoxy system in the presence of a reactive diluent . Thermochim. Acta , 2022 , 717 , 179351 .
Xu, H. J. ; Tian, G. F. ; Meng, Y. ; Li, X. Y. ; Wu, D. Z . Cure kinetics of a nadic methyl anhydride cured tertiary epoxy mixture . Thermochim. Acta , 2021 , 701 , 178942 .
Arshad, M. A. ; Maaroufi, A . Relationship between Johnson-Mehl-Avrami and Šesták-Berggren models in the kinetics of crystallization in amorphous materials . J. Non Cryst. Solids , 2015 , 413 , 53 – 58 .
Gibson, R. L. ; Simmons, M. J. H. ; Hugh Stitt, E. ; West, J. ; Wilkinson, S. K. ; Gallen, R. W . Kinetic modelling of thermal processes using a modified Sestak-Berggren equation . Chem. Eng. J . , 2021 , 408 , 127318 .
Vyazovkin, S. ; Burnham, A. K. ; Criado, J. M. ; Pérez-Maqueda, L. A. ; Popescu, C. ; Sbirrazzuoli, N . ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data . Thermochim. Acta , 2011 , 520 ( 1-2 ), 1 – 19 .
Luo, J. T. ; Wang, X. ; Tong, B. ; Li, Z. Q. ; Rocchi, L. A. ; Di Lisio, V. ; Cangialosi, D. ; Zuo, B . Length scale of molecular motions governing glass equilibration in hyperquenched and slow-cooled polystyrene . J. Phys. Chem. Lett . , 2024 , 15 ( 2 ), 357 – 363 .
Lin, X. ; Nie, M. X. ; Liu, H. ; Zhou, D. L. ; Fu, S. R. ; Zhang, Q. ; Han, D. ; Fu, Q . Topology-enabled simultaneous enhancement of mechanical and healable properties in glassy polymeric materials using larger POSS . Chem. Mater . , 2024 , 36 ( 1 ), 575 – 584 .
0
Views
258
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802046898号