浏览全部资源
扫码关注微信
1..山东交通学院 交通土建工程学院,济南 250357
2..山东交通学院 智慧交通研究院,济南 250357
*唐新德,E-mail: xdtang8033@163.com
纸质出版日期:2024-04-20,
收稿日期:2023-08-10,
录用日期:2023-09-18
扫 描 看 全 文
马菲, 唐新德, 王鑫砚, 晁亚楠. 两性离子聚合物涂层的研究与应用进展. 高分子通报, 2024, 37(4), 471–485
Ma, F.; Tang, X. D.; Wang, X. Y.; Chao, Y. N. Progress on zwitterionic polymeric coatings. Polym. Bull. (in Chinese), 2024, 37(4), 471–485
马菲, 唐新德, 王鑫砚, 晁亚楠. 两性离子聚合物涂层的研究与应用进展. 高分子通报, 2024, 37(4), 471–485 DOI: 10.14028/j.cnki.1003-3726.2024.23.283.
Ma, F.; Tang, X. D.; Wang, X. Y.; Chao, Y. N. Progress on zwitterionic polymeric coatings. Polym. Bull. (in Chinese), 2024, 37(4), 471–485 DOI: 10.14028/j.cnki.1003-3726.2024.23.283.
两性离子聚合物是一类整体呈电中性,在同一单体侧链上同时含有阴、阳离子基团的高分子材料,因其独特的分子结构和理化性质引起了人们广泛的关注。两性离子聚合物具有极强的水化能力,通过结合水分子可以在材料表面形成一层致密的水化层,使其成为涂层材料功能化的良好选择,在诸多领域具有潜在的应用价值。从介绍两性离子聚合物的分类及聚合物涂层的制备方法入手,进一步对两性离子聚合物在海洋防污、生物医学和膜分离技术中的应用研究进展进行论述,最后对两性离子聚合物及涂层的发展进行总结和展望。
Zwitterionic polymers with both cationic and anionic charged moieties on the same side chain display electroneutrality
which have attracted considerable attention due to their unique molecular structure and physicochemical properties. Zwitterionic polymers have a strong hydration capability
which can form a dense hydration layer on the surface of the material by binding water molecules
making it a good choice for the functionalization of coating materials and has potential application value in many fields. In this review
the categories of zwitterionic polymers and the preparation methods of polymeric coatings were firstly introduced
and then the application research of zwitterionic materials in marine antifouling
biomedicine and membrane separation technology was described. Finally
the development of zwitterionic polymeric coatings was summarized and prospected.
两性离子聚合物聚合物涂层膜分离技术海洋防污生物医学
Zwitterionic polymersPolymeric coatingsMembrane separation technologyMarine antifoulingBiomedicine
Venault, A.; Chang, Y. Designs of zwitterionic interfaces and membranes. Langmuir, 2019, 35(5), 1714–1726.
闫树鹏, 张冲, 吕华. 两性离子聚合物的研究进展. 功能高分子学报, 2020, 33(1), 1–14.
Ishihara, K. Blood-compatible surfaces with phosphoryl-choline-based polymers for cardiovascular medical devices. Langmuir, 2019, 35(5), 1778–1787.
何晓燕, 周文瑞, 徐晓君, 杨武. 两性离子聚合物的合成及应用. 化学进展, 2013, 25(6), 1023–1030.
Lowe, A. B.; McCormick, C. L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev., 2002, 102(11), 4177–4190.
Laschewsky, A.; Rosenhahn, A. Molecular design of zwitterionic polymer interfaces: searching for the difference. Langmuir, 2019, 35(5), 1056–1071.
耿逸婉, 阳俊, 武燕月, 邱鑫雨, 王文丽, 卢治国, 张欣. 两性离子材料在生物化工领域的应用. 化学反应工程与工艺, 2023, 39(2), 166–182.
Hart, R.; Timmerman, D. New polyampholytes: The polysulfobetaines. J. Polym. Sci., 1958, 28(118), 638–640.
Wang, N.; Seymour, B. T.; Lewoczko, E. M.; Kent, E. W.; Chen, M. L.; Wang, J. H.; Zhao, B. Zwitterionic poly(sulfobetaine methacrylate)s in water: From upper critical solution temperature (UCST) to lower critical solution temperature (LCST) with increasing length of one alkyl substituent on the nitrogen atom. Polym. Chem., 2018, 9(43), 5257–5261.
Ye, L.; Zhang, Y. B.; Wang, Q. S.; Zhou, X.; Yang, B. G.; Ji, F.; Dong, D. Y.; Gao, L. N.; Cui, Y. L.; Yao, F. L. Physical cross-linking starch-based zwitterionic hydrogel exhibiting excellent biocompatibility, protein resistance, and biodegradability. ACS Appl. Mater. Interfaces, 2016, 8(24), 15710–15723.
Li, X. H.; Tang, C. J.; Liu, D.; Yuan, Z. F.; Hung, H. C.; Luozhong, S. J.; Gu, W. C.; Wu, K.; Jiang, S. Y. High-strength and nonfouling zwitterionic triple-network hydrogel in saline environments. Adv. Mater., 2021, 33(39), e2102479.
Dong, D. Y.; Tsao, C.; Hung, H. C.; Yao, F. L.; Tang, C. J.; Niu, L. Q.; Ma, J. R.; MacArthur, J.; Sinclair, A.; Wu, K.; Jain, P.; Hansen, M. R.; Ly, D.; Tang, S. G. H.; Luu, T. M.; Jain, P.; Jiang, S. Y. High-strength and fibrous capsule-resistant zwitterionic elastomers. Sci. Adv., 2021, 7(1), eabc5442.
Azzaroni, O.; Brown, A. A.; Huck, W. T. S. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew. Chem. Int. Ed., 2006, 45(11), 1770–1774.
Cheng, N.; Brown, A. A.; Azzaroni, O.; Huck, W. T. S. Thickness-dependent properties of polyzwitterionic brushes. Macromolecules, 2008, 41(17), 6317–6321.
Sun, Y. N.; Lu, S. S.; Li, Q. S.; Ren, Y. W.; Ding, Y. Q.; Wu, H. L.; He, X. H.; Shang, Y. D. High strength zwitterionic nano-micelle hydrogels with superior self-healing, adhesive and ion conductive properties. Eur. Polym. J., 2020, 133, 109761.
Wang, L. F.; Gao, G. R.; Zhou, Y.; Xu, T.; Chen, J.; Wang, R.; Zhang, R.; Fu, J. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces, 2019, 11(3), 3506–3515.
Ladenheim, H.; Morawetz, H. A new type of polyampholyte: poly(4-vinyl pyridine betaine). J. Polym. Sci., 1957, 26(113), 251–254.
Zhang, Z.; Cheng, G.; Carr, L. R.; Vaisocherová, H.; Chen, S. F.; Jiang, S. Y. The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxy-betaines with controlled properties. Biomaterials, 2008, 29(36), 4719–4725.
Sundaram, H. S.; Ella-Menye, J. R.; Brault, N. D.; Shao, Q.; Jiang, S. Y. Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation. Chem. Sci., 2014, 5(1), 200–205.
Hung, H. C.; Jain, P.; Zhang, P.; Sun, F.; Sinclair, A.; Bai, T.; Li, B. W.; Wu, K.; Tsao, C.; Liu, E. J.; Sundaram, H. S.; Lin, X. J.; Farahani, P.; Fujihara, T.; Jiang, S. Y. A coating-free nonfouling polymeric elastomer. Adv. Mater., 2017, 29(31), 1700617.
Kadoma, Y.; Nakabayashi, N.; Masuhara, E.; Yamauchi, J. Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu, 1978, 35, 423–427.
Ishihara, K. Revolutionary advances in 2-methacryloy-loxyethyl phosphorylcholine polymers as biomaterials. J. Biomed. Mater. Res. A, 2019, 107(5), 933–943.
Skinner, M.; Johnston, B. M.; Liu, Y. L.; Hammer, B.; Selhorst, R.; Xenidou, I.; Perry, S. L.; Emrick, T. Synthesis of zwitterionic pluronic analogs. Biomacro-molecules, 2018, 19(8), 3377–3389.
Zhou, J. H.; Yao, H. T.; Ma, J. Z. Recent advances in RAFT-mediated surfactant-free emulsion polymerization. Polym. Chem., 2018, 9(19), 2532–2561.
Bowman, J. I.; Eades, C. B.; Korpanty, J.; Garrison, J. B.; Scheutz, G. M.; Goodrich, S. L.; Gianneschi, N. C.; Sumerlin, B. S. Controlling morphological transitions of polymeric nanoparticles via doubly responsive block copolymers. Macromolecules, 2023, 56(9), 3316–3323.
龚伟, 牛亚鹏, 韩霞, 刘洪来. 多巴胺端基聚磺基甜菜碱的表面改性及其表面抗蛋白吸附性能. 华东理工大学学报(自然科学版), 2018, 44(3), 316–322.
Liang, B.; Zhang, G. Y.; Zhong, Z. X.; Sato, T.; Hozumi, A.; Su, Z. H. Substrate-independent polyzwitterionic coating for oil/water separation membranes. Chem. Eng. J., 2019, 362, 126–135.
Ali, S. A. Synthesis and solution properties of a quaternary ammonium polyelectrolyte and its correspon-ding polyampholyte. Polymer, 2001, 42(19), 7961–7970.
Abe, A.; Dusek, K.; Kobayashi, S. Supramolecular Polymers Polymeric Betains Oligomers. SpringerVerlag Berlin Heidelberg, 2006.
Yang, R.; Xu, J. J.; Ozaydin-Ince, G.; Wong, S. Y.; Gleason, K. K. Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition. Chem. Mater., 2011, 23(5), 1263–1272.
Mercader, A.; Ye, S. H.; Kim, S.; Orizondo, R. A.; Cho, S. K.; Wagner, W. R. PDMS-zwitterionic hybrid for facile, antifouling microfluidic device fabrication. Langmuir, 2022, 38(12), 3775–3784.
田静怡. 羟丙基磺基甜菜碱制备与性能的研究. 中国石油大学 (北京), 2020.
Zhu, Y. Z.; Wang, J. L.; Zhang, F.; Gao, S. J.; Wang, A. Q.; Fang, W. X.; Jin, J. A. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater., 2018, 28(40), 1804121.
Baker, S. L.; Munasinghe, A.; Kaupbayeva, B.; Rebecca Kang, N.; Certiat, M.; Murata, H.; Matyjaszewski, K.; Lin, P.; Colina, C. M.; Russell, A. J. Transforming protein-polymer conjugate purification by tuning protein solubility. Nat. Commun., 2019, 10, 4718.
Li, D. X.; Wei, Q. L.; Wu, C. X.; Zhang, X. F.; Xue, Q. H.; Zheng, T. R.; Cao, M. W. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv. Colloid Interface Sci., 2020, 278, 102141.
Sasahara, K.; Hyodo, T.; Shimizu, Y.; Egashira, M. Macroporous and nanosized ceramic films prepared by modified sol-gel method with PMMA microsphere templates. J. Eur. Ceram. Soc., 2004, 24(6), 1961–1967.
Wang, D. H.; Xu, J. K.; Tan, J. Y.; Yang, J. L.; Zhou, S. X. In situ generation of amphiphilic coatings based on a self-catalytic zwitterionic precursor and their antifouling performance. Chem. Eng. J., 2021, 422, 130115.
杨露寒, 张家振, 徐煌, 周洁, 邱汉迅, 陈刚. 碳纳米管薄膜制备及其光电探测应用进展. 红外与毫米波学报, 2021, 40(4): 439–458.
Vaterrodt, A.; Thallinger, B.; Daumann, K.; Koch, D.; Guebitz, G. M.; Ulbricht, M. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly. Langmuir, 2016, 32(5), 1347–1359.
Chang, C. C.; Kolewe, K. W.; Li, Y. Y.; Kosif, I.; Freeman, B. D.; Carter, K. R.; Schiffman, J. D.; Emrick, T. Underwater superoleophobic surfaces prepared from polymer zwitterion/dopamine composite coatings. Adv. Mater. Interfaces, 2016, 3(6), 1500521.
Zhang, C.; Li, H. N.; Du, Y.; Ma, M. Q.; Xu, Z. K. CuSO4/H2O2-triggered polydopamine/poly(sulfobetaine methacrylate) coatings for antifouling membrane surfaces. Langmuir, 2017, 33(5), 1210–1216.
Qiu, W. Z.; Zhao, Z. S.; Du, Y.; Hu, M. X.; Xu, Z. K. Antimicrobial membrane surfaces via efficient poly-ethyleneimine immobilization and cationization. Appl. Surf. Sci., 2017, 426, 972–979.
Golabchi, A.; Wu, B. C.; Cao, B.; Bettinger, C. J.; Cui, X. T. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials, 2019, 225, 119519.
Jiang, J. X.; Fu, Y. C.; Zhang, Q. H.; Zhan, X. L.; Chen, F. Q. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property. Appl. Surf. Sci., 2017, 412, 1–9.
Zhang, Z.; Finlay, J. A.; Wang, L. F.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Y. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir, 2009, 25(23), 13516–13521.
Bodkhe, R. B.; Stafslien, S. J.; Daniels, J.; Cilz, N.; Muelhberg, A. J.; Thompson, S. E. M.; Callow, M. E.; Callow, J. A.; Webster, D. C. Zwitterionic siloxane-polyurethane fouling-release coatings. Prog. Org. Coat., 2015, 78, 369–380.
Dundua, A.; Franzka, S.; Ulbricht, M. Improved antifouling properties of polydimethylsiloxane films via formation of polysiloxane/polyzwitterion interpen-etrating networks. Macromol. Rapid Commun., 2016, 37(24), 2030–2036.
Zhang, Q.; Tang, X. D.; Wang, T. S.; Yu, F. Q.; Guo, W. J.; Pei, M. S. Thermo-sensitive zwitterionic block copolymers via ATRP. RSC Adv., 2014, 4(46), 24240–24247.
Huang, H.; Zhang, C. C.; Crisci, R.; Lu, T. Y.; Hung, H. C.; Sajib, M. S. J.; Sarker, P.; Ma, J. R.; Wei, T.; Jiang, S. Y.; Chen, Z. Strong surface hydration and salt resistant mechanism of a new nonfouling zwitterionic polymer based on protein stabilizer TMAO. J. Am. Chem. Soc., 2021, 143(40), 16786–16795.
Zhang, L. L.; Song, F.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Yu, J.; Zhang, H. S.; Duan, J. Z.; Wang, J. Construction of Bi/Bi5O7I anchored on a polymer with boosted interfacial charge transfer for biofouling resistance and photocatalytic H2 evolution. Catal. Sci. Technol., 2021, 11(4), 1330–1336.
Dai, G. X.; Ai, X. Q.; Mei, L. Q.; Ma, C. F.; Zhang, G. Z. Kill-resist-renew trinity: hyperbranched polymer with self-regenerating attack and defense for antifouling coatings. ACS Appl. Mater. Interfaces, 2021, 13(11), 13735–13743.
Zhang, L.; Cao, Z. Q.; Bai, T.; Carr, L.; Ella-Menye, J. R.; Irvin, C.; Ratner, B. D.; Jiang, S. Y. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol., 2013, 31(6), 553–556.
Zhang, P.; Sun, F.; Tsao, C.; Liu, S. J.; Jain, P.; Sinclair, A.; Hung, H. C.; Bai, T.; Wu, K.; Jiang, S. Y. Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc. Natl. Acad. Sci. USA, 2015, 112(39), 12046–12051.
Cao, J.; Lu, A. J.; Li, C. L.; Cai, M. T.; Chen, Y. W.; Li, S.; Luo, X. L. Effect of architecture on the micellar properties of poly(ɛ-caprolactone) containing sulfobetaines. Colloids Surf. B, 2013, 112, 35–41.
Harijan, M.; Singh, M. Zwitterionic polymers in drug delivery: a review. J. Mol. Recognit., 2022, 35(1): e2944.
Cao, J.; Xiu, K. M.; Zhu, K.; Chen, Y. W.; Luo, X. L. Copolymer nanoparticles composed of sulfobetaine and poly(ε-caprolactone) as novel anticancer drug carriers. J. Biomed. Mater. Res. A, 2012, 100A(8), 2079–2087.
Cao, Z. Q.; Yu, Q. M.; Xue, H.; Cheng, G.; Jiang, S. Y. Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angew. Chem. Int. Ed., 2010, 49(22), 3771–3776.
Zhang, L.; Xue, H.; Cao, Z. Q.; Keefe, A.; Wang, J. N.; Jiang, S. Y. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials, 2011, 32(20), 4604–4608.
Lin, M.; Meng, S.; Zhong, W.; Li, Z. L.; Du, Q. G.; Tomasik, P. Novel biodegradable blend matrices for controlled drug release. J. Pharm. Sci., 2008, 97(10), 4240–4248.
Konno, T.; Watanabe, J.; Ishihara, K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J. Biomed. Mater. Res. A, 2003, 65A(2), 209–214.
Soma, D.; Kitayama, J.; Konno, T.; Ishihara, K.; Yamada, J.; Kamei, T. K.; Ishigami, H.; Kaisaki, S.; Nagawa, H. Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) for peritoneal dissemination of gastric cancer. Cancer Sci., 2009, 100(10), 1979–1985.
Massignani, M.; LoPresti, C.; Blanazs, A.; Madsen, J.; Armes, S. P.; Lewis, A. L.; Battaglia, G. Controlling cellular uptake by surface chemistry, size, and surface topology at the nanoscale. Small, 2009, 5(21), 2424–2432.
Peng, S. J.; Men, Y. Z.; Xie, R. H.; Tian, Y. F.; Yang, W. L. Biodegradable phosphorylcholine-based zwitterionic polymer nanogels with smart charge-conversion ability for efficient inhibition of tumor cells. J. Colloid Interface Sci., 2019, 539, 19–29.
Sobolčiak, P.; Špírek, M.; Katrlík, J.; Gemeiner, P.; Lacík, I.; Kasák, P. Light-switchable polymer from cationic to zwitterionic form: synthesis, characterization, and interactions with DNA and bacterial cells. Macromol. Rapid Commun., 2013, 34(8), 635–639.
Lieu Le, N.; Quilitzsch, M.; Cheng, H.; Hong, P. Y.; Ulbricht, M.; Nunes, S. P.; Chung, T. S. Hollow fiber membrane lumen modified by polyzwitterionic grafting. J. Membr. Sci., 2017, 522, 1–11.
Hamzah, S.; Ali, N.; Mohammad, A.; Ariffin, M.; Ali, A. Design of chitosan/PSf self-assembly membrane to mitigate fouling and enhance performance in trypsin separation. J. Chem. Technol. Biotechnol., 2012, 87, 1157–1166.
Dizon, G. V.; Venault, A. Direct in-situ modification of PVDF membranes with a zwitterionic copolymer to form bi-continuous and fouling resistant membranes. J. Membr. Sci., 2018, 550, 45–58.
Kuang, J. H.; Messersmith, P. B. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator. Langmuir, 2012, 28(18), 7258–7266.
Zhang, N.; Cheng, K.; Zhang, J. J.; Li, N.; Yang, X.; Wang, Z. N. A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance. J. Membr. Sci., 2022, 660, 120829.
Shan, X. Y.; Li, S. L.; Fu, W. M.; Hu, Y. L.; Gong, G. H.; Hu, Y. X. Preparation of high performance TFC RO membranes by surface grafting of small-molecule zwitterions. J. Membr. Sci., 2020, 608, 118209.
Gu, Q.; Liu, L. F.; Wang, Y. L.; Yu, C. Y. Surface modification of polyamide reverse osmosis membranes with small-molecule zwitterions for enhanced fouling resistance: a molecular simulation study. Phys. Chem. Chem. Phys., 2021, 23(11), 6623–6631.
0
浏览量
119
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构