浏览全部资源
扫码关注微信
天津工业大学材料科学与工程学院 省部共建分离膜与膜过程国家重点实验室,天津 300387
*辛清萍,E-mail: xinqingping@tiangong.edu.cn;张玉忠,E-mail: zhangyz2004cn@vip.163.com
*辛清萍,E-mail: xinqingping@tiangong.edu.cn;张玉忠,E-mail: zhangyz2004cn@vip.163.com
纸质出版日期:2024-04-20,
收稿日期:2023-08-23,
录用日期:2023-10-07
扫 描 看 全 文
苏尚德, 祝轩, 辛清萍, 叶卉, 赵莉芝, 李泓, 丁晓莉, 张玉忠. 用于碳捕集的气体分离复合膜研究进展. 高分子通报, 2024, 37(4), 458–470
Su, S. D.; Zhu, X. Xin, Q. P.; Ye, H.; Zhao, L. Z.; Li, H.; Ding, X. L.; Zhang, Y. Z. Research progress in gas separation composite membranes for carbon capture. Polym. Bull. (in Chinese), 2024, 37(4), 458–470
苏尚德, 祝轩, 辛清萍, 叶卉, 赵莉芝, 李泓, 丁晓莉, 张玉忠. 用于碳捕集的气体分离复合膜研究进展. 高分子通报, 2024, 37(4), 458–470 DOI: 10.14028/j.cnki.1003-3726.2024.23.292.
Su, S. D.; Zhu, X. Xin, Q. P.; Ye, H.; Zhao, L. Z.; Li, H.; Ding, X. L.; Zhang, Y. Z. Research progress in gas separation composite membranes for carbon capture. Polym. Bull. (in Chinese), 2024, 37(4), 458–470 DOI: 10.14028/j.cnki.1003-3726.2024.23.292.
膜分离技术因其选择性高、成本低、绿色无污染等优点在碳捕集领域受到广泛关注。而复合膜由于其超薄的分离层结构,在气体分离上表现出均质膜所不具备的性能优势。本文介绍了膜法气体分离原理以及目前用于碳捕集技术的复合膜材料,综述了国内外用于碳捕集复合膜的应用及其研究进展。最后分析了复合膜在碳捕集领域所面临的挑战和未来的发展方向。
Membrane separation technology has received wide attention in the field of carbon capture due to its advantages of high selectivity
low cost
green and non-polluting. Composite membranes
due to their ultrathin separation layer structure
show performance advantages in gas separation that homogeneous membranes do not have. This review introduces the principle of gas separation by membrane method and the composite membrane materials currently used in carbon capture technology
and summarizes the applications of composite membranes for carbon capture and their research progress at home and abroad. Finally
it analyzes the challenges and future development direction of composite membranes in the field of carbon capture.
复合膜碳捕集气体分离应用
Composite membraneCarbon captureGas separationApplication
Dai, Y. Y.; Niu, Z. H.; Luo, W. J.; Wang, Y. Y.; Mu, P.; Li, J. A review on the recent advances in composite membranes for CO2 capture processes. Sep. Purif. Technol., 2023, 307, 122752.
何舟. 二元混合气体在聚合物膜和无机膜上的渗透实验和 Maxwell-Stefan 研究. 中国石油大学 (华东), 2019.
Dai, Z. D.; Ansaloni, L.; Deng, L. Y. Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review. Green Energy Environ., 2016, 1(2), 102–128.
董松林. 高性能CO2分离多层复合膜的研制及放大. 天津: 天津大学, 2020.
Wiheeb, A. D.; Helwani, Z.; Kim, J.; Othman, M. R. Pressure swing adsorption technologies for carbon dioxide capture. Sep. Purif. Rev., 2016, 45(2), 108–121.
Rufford, T. E.; Smart, S.; Watson, G. C. Y.; Graham, B. F.; Boxall, J.; Diniz da Costa, J. C.; May, E. F. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Petroleum Sci. Eng., 2012, 94-95, 123–154.
王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术: 研究现状及展望. 化工进展, 2022, 41(3), 1097–1101.
王学松. 气体膜技术. 北京: 化学工业出版社, 2010, 45–46.
Weigelt, F.; Escorihuela, S.; Descalzo, A.; Tena, A.; Escolástico, S.; Shishatskiy, S.; Brinkmann, T. Novel polymeric thin-film composite membranes for high-temperature gas separations. Membranes, 2019, 9(4), 51.
马嫱. F-Ce纳米片混合基质膜制备与CO2分离性能研究. 天津: 天津工业大学, 2019.
Ji, W. H.; Li, K. H.; Shi, W. X.; Bai, L. F.; Li, J. X.; Ma, X. H. The effect of chain rigidity and microporosity on the sub-ambient temperature gas separation properties of intrinsic microporous polyimides. J. Membr. Sci.,2021, 635, 119439.
任小峰. 富胺纳米传质通道强化聚乙烯胺型混合基质复合膜的CO2分离性能研究. 太原: 太原理工大学, 2023.
Zeng, H. Z.; He, S. S.; Hosseini, S. S.; Zhu, B.; Shao, L. Emerging nanomaterial incorporated membranes for gas separation and pervaporation towards energetic-efficient applications. Adv. Membr.,2022, 2, 100015.
Li, S. C.; Wang, Z.; Yu, X. W.; Wang, J. X.; Wang, S. C. High-performance membranes with multi-permselectivity for CO2 separation. Adv. Mater., 2012, 24(24), 3196–3200.
Cheng, L. H.; Fu, Y. J.; Liao, K. S.; Chen, J. T.; Hu, C. C.; Hung, W. S.; Lee, K. R.; Lai, J. Y. A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for CO2 capture. J. Membr. Sci., 2014, 460, 1–8.
Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A. R.; Lim, H. N. Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers, 2021, 13(12), 2003.
Thornton, A. W.; Ahmed, A.; Kannam, S. K.; Todd, B. D.; Majumder, M.; Hill, A. J. Analytical diffusion mechanism (ADiM) model combining specular, Knudsen and surface diffusion. J. Membr. Sci., 2015, 485, 1–9.
Kunalan, S.; Palanivelu, K. Polymeric composite membranes in carbon dioxide capture process: a review. Environ. Sci. Pollut. Res., 2022, 29(26), 38735–38767.
Ali Alavi, S.; Kargari, A.; Sanaeepur, H.; Karimi, M. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations. Res. Chem. Intermed., 2017, 43(5), 2959–2984.
Li, S. C.; Wang, Z.; Zhang, C. X.; Wang, M. M.; Yuan, F.; Wang, J. X.; Wang, S. C. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. J. Membr. Sci., 2013, 436, 121–131.
Firpo, G.; Angeli, E.; Repetto, L.; Valbusa, U. Permeability thickness dependence of polydimethylsilo-xane (PDMS) membranes. J. Membr. Sci., 2015, 481, 1–8.
Zhao, B. W.; Peng, N.; Liang, C. Z.; Yong, W. F.; Chung, T. S. Hollow fiber membrane dehumidification device for air conditioning system. Membranes, 2015, 5(4), 722–738.
Shieh, J. J.; Chung, T. S. Cellulose nitrate-based multilayer composite membranes for gas separation. J. Membr. Sci., 2000, 166(2), 259–269.
Kim, J.; Choi, J.; Soo Kang, Y.; Won, J. Matrix effect of mixed-matrix membrane containing CO2-selective MOFs. J. Appl. Polym. Sci., 2016, 133(1), 42853.
Kim, S.; Lee, Y. M. High performance polymer membranes for CO2 separation. Curr. Opin. Chem. Eng., 2013, 2(2), 238–244.
Lasseuguette, E.; Ferrari, M. C.; Brandani, S. Humidity impact on the gas permeability of PIM-1 membrane for post-combustion application. Energy Procedia, 2014, 63, 194–201.
Peter, J.; Kosmala, B.; Bleha, M. Synthesis of hyperbranched copolyimides and their application as selective layers in composite membranes. Desalination, 2009, 245(1-3), 516–526.
Aliyev, E. M.; Khan, M. M.; Nabiyev, A. M.; Alosmanov, R. M.; Bunyad-zadeh, I. A.; Shishatskiy, S.; Filiz, V. Covalently modified graphene oxide and polymer of intrinsic microporosity (PIM-1) in mixed matrix thin-film composite membranes. Nanoscale Res. Lett., 2018, 13(1), 359.
Taniguchi, I.; Wada, N.; Kinugasa, K.; Higa, M. A strategy to enhance CO2 permeability of well-defined hyper-branched polymers with dense polyoxyethylene comb graft. J. Membr. Sci., 2017, 535, 239–247.
王丰恺, 辛清萍, 叶卉, 赵莉芝, 李泓, 张玉忠. 膜法气体脱湿的研究进展. 材料科学, 2022, (2), 103–111.
Li, Y. F.; Wang, S. F.; Wu, H.; Guo, R. L.; Liu, Y.; Jiang, Z. Y.; Tian, Z. Z.; Zhang, P.; Cao, X. Z.; Wang, B. Y. High-performance composite membrane with enriched CO2-philic groups and improved adhesion at the interface. ACS Appl. Mater. Interfaces, 2014, 6(9), 6654–6663.
Yave, W.; Car, A.; Funari, S. S.; Nunes, S. P.; Peinemann, K. V. CO2-philic polymer membrane with extremely high separation performance. Macromolecules, 2010, 43(1), 326–333.
Fang, M. F.; He, Z. J.; Merkel, T. C.; Okamoto, Y. High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement. J. Mater. Chem. A, 2018, 6(2), 652–658.
Sun, J.; Yi, Z.; Zhao, X. T.; Zhou, Y.; Gao, C. J. CO2 separation membranes with high permeability and CO2/N2 selectivity prepared by electrostatic self-assembly of polyethylenimine on reverse osmosis membranes. RSC Adv., 2017, 7(24), 14678–14687.
Xu, R.; Wang, Z.; Wang, M.; Qiao, Z. H.; Wang, J. X. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. J. Membr. Sci., 2019, 573, 455–464.
Qiao, Z. H.; Wang, Z.; Yuan, S. J.; Wang, J. X.; Wang, S. C. Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation. J. Membr. Sci., 2015, 475, 290–302.
Scofield, J. M. P.; Gurr, P. A.; Kim, J.; Fu, Q. A.; Halim, A.; Kentish, S. E.; Qiao, G. G. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)-b-poly(ethylene glycol) copo-lymer additives for CO2 separation. J. Polym. Sci. A, 2015, 53(12), 1500–1511.
Yeo, Z. Y.; Chew, T. L.; Zhu, P. W.; Mohamed, A. R.; Chai, S. P. Synthesis and performance of microporous inorganic membranes for CO2 separation: a review. J. Porous Mater., 2013, 20(6), 1457–1475.
Kosinov, N.; Auffret, C.; Borghuis, G. J.; Sripathi, V. G. P.; Hensen, E. J. M. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes. J. Membr. Sci., 2015, 484, 140–145.
Himeno, S.; Tomita, T.; Suzuki, K.; Nakayama, K.; Yajima, K.; Yoshida, S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res., 2007, 46(21), 6989–6997.
Wei, X. L.; Liang, S.; Xu, Y. Y.; Sun, Y. L.; An, J. F.; Chao, Z. S. Methylcellulose-assisted synthesis of a compact and thin NaA zeolite membrane. RSC Adv., 2016, 6(76), 71863–71866.
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Zhou, H. C. Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater., 2018, 30(37), 1704303.
Zhu, H. T.; Wang, L. N.; Jie, X. M.; Liu, D. D.; Cao, Y. M. Improved interfacial affinity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53(Al). ACS Appl. Mater. Interfaces, 2016, 8(34), 22696–22704.
Japip, S.; Xiao, Y. C.; Chung, T. S. Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes. Ind. Eng. Chem. Res., 2016, 55(35), 9507–9517.
Bhaskar, A.; Banerjee, R.; Kharul, U. ZIF-8@PBI-BuI composite membranes: elegant effects of PBI structural variations on gas permeation performance. J. Mater. Chem. A, 2014, 2(32), 12962–12967.
Qiao, Z. H.; Zhao, S.; Sheng, M. L.; Wang, J. X.; Wang, S. C.; Wang, Z.; Zhong, C. L.; Guiver, M. D. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat. Mater., 2019, 18(2), 163–168.
Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalentorganic frameworks. Science, 2005, 310(5751), 1166–1170.
Cao, X. C.; Xu, H. Q.; Dong, S. L.; Xu, J. Y.; Qiao, Z. H.; Zhao, S.; Wang, J. X.; Wang, Z. Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix. J. Membr. Sci., 2020, 601, 117882.
Fan, H. W.; Mundstock, A.; Gu, J. H.; Meng, H.; Caro, J. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation. J. Mater. Chem. A, 2018, 6(35), 16849–16853.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666–669.
Guo, Y. Q.; Dai, B. H.; Peng, J.; Wu, C. Z.; Xie, Y. Electron transport in low dimensional solids: a surface chemistry perspective. J. Am. Chem. Soc., 2019, 141(2), 723–732.
Wang, Y.; Li, S. S.; Yang, H. Y.; Luo, J. E. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv., 2020, 10(26), 15328–15345.
Li, H. P.; Shen, X. P.; Han, K.; Tang, G.; Zhang, Z. H. Quantum chemistry study on the third-order nonlinear optical properties of spirobifluorene derivatives. Comput. Theor. Chem., 2013, 1023, 95–98.
Choi, W.; Choi, S. E.; Seol, J. S.; Kim, J. P.; Kim, M.; Ji, H.; Kwon, O.; Kim, H.; Kim, K. C.; Kim, D. W. Polyethylene oxide-intercalated nanoporous graphene membranes for ultrafast H2/CO2 separation: role of graphene confinement effect on gas molecule binding. J. Membr. Sci., 2022, 660, 120821.
Shen, Y. J.; Wang, H. X.; Liu, J. D.; Zhang, Y. T. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain. Chem. Eng., 2015, 3(8), 1819–1829.
Yang, K.; Dai, Y.; Ruan, X. H.; Zheng, W. J.; Yang, X. C.; Ding, R.; He, G. H. Stretched ZIF-8@GO flake-like fillers via pre-Zn(II)-doping strategy to enhance CO2 permeation in mixed matrix membranes. J. Membr. Sci., 2020, 601, 117934.
Zhang, J. H.; Xin, Q. P.; Li, X.; Yun, M. Y.; Xu, R.; Wang, S. F.; Li, Y. F.; Lin, L. G.; Ding, X. L.; Ye, H.; Zhang, Y. Z. Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J. Membr. Sci., 2019, 570-571, 343–354.
Wang, S. F.; Xie, Y.; He, G. W.; Xin, Q. P.; Zhang, J. H.; Yang, L. X.; Li, Y. F.; Wu, H.; Zhang, Y. Z.; Guiver, M. D.; Jiang, Z. Y. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angew. Chem. Int. Ed., 2017, 56(45), 14246–14251.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Barsoum, M. W. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23(37), 4248–4253.
Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding, L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun., 2018, 9, 155.
Liu, G. Z.; Cheng, L.; Chen, G. N.; Liang, F.; Liu, G. P.; Jin, W. Q. Pebax-based membrane filled with two-dimensional mxene nanosheets for efficient CO2 capture. Chem. Asian. J., 2020, 15(15), 2364–2370.
Cheng, L.; Song, Y. Y.; Chen, H. M.; Liu, G. Z.; Liu, G. P.; Jin, W. Q. g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property. Sep. Purif. Technol., 2020, 250, 117200.
Zhang, L. T.; Kang, W. M.; Ma, Q. A.; Xie, Y. F.; Jia, Y. L.; Deng, N. P.; Zhang, Y. Z.; Ju, J.; Cheng, B. W. Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. J. Am. Chem. Soc., 2019, 141(33), 13134–13142.
Xin, Q. P.; Shao, W.; Ma, Q. A.; Ye, X. K.; Huang, Z. X.; Li, B. Y.; Wang, S. F.; Li, H.; Zhang, Y. Z. Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Appl. Mater. Interfaces, 2020, 12(42), 48067–48076.
Zhao, M. X.; Guo, J. P.; Xin, Q. P.; Zhang, Y. L.; Li, X.; Ding, X. L.; Zhang, L.; Zhao, L. Z.; Ye, H.; Li, H.; Xuan, G. Y.; Zhang, Y. Z. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Sep. Purif. Technol., 2023, 324, 124512.
Zhang, Y. L.; Zhao, M. X.; Li, X.; Xin, Q. P.; Ding, X. L.; Zhao, L. Z.; Ye, H.; Lin, L. G.; Li, H.; Zhang, Y. Z. Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. J. Ind. Eng. Chem., 2023, 125, 200–210.
Ong, Y. T.; Yee, K. F.; Cheng, Y. K.; Tan, S. H. A review on the use and stability of supported liquid membranes in the pervaporation process. Sep. Purif. Rev., 2014, 43(1), 62–88.
Han, Y.; Winston Ho, W. S. Recent developments on polymeric membranes for CO2 capture from flue gas. J. Polym. Eng., 2020, 40(6), 529–542.
Li, P.; Paul, D. R.; Chung, T. S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chem., 2012, 14(4), 1052–1063.
Yin, J.; Zhang, C. C.; Yu, Y. F.; Hao, T. Y.; Wang, H.; Ding, X. L.; Meng, J. Q. Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance. J. Membr. Sci., 2020, 593, 117405.
Uchytil, P.; Schauer, J.; Petrychkovych, R.; Setnickova, K.; Suen, S. Y. Ionic liquid membranes for carbon dioxide-methane separation. J. Membr. Sci., 2011, 383(1-2), 262–271.
White, L. S.; Amo, K. D.; Wu, T.; Merkel, T. C. Extended field trials of Polaris sweep modules for carbon capture. J. Membr. Sci., 2017, 542, 217–225.
Brinkmann, T.; Lillepärg, J.; Notzke, H.; Pohlmann, J.; Shishatskiy, S.; Wind, J.; Wolff, T. Development of CO2 selective poly(ethylene oxide)-based membranes: from laboratory to pilot plant scale. Engineering, 2017, 3(4), 485–493.
Wu, H. Y.; Li, Q. H.; Sheng, M. L.; Wang, Z.; Zhao, S.; Wang, J. X.; Mao, S. B.; Wang, D.; Guo, B. S.; Ye, N.; Kang, G. D.; Li, M.; Cao, Y. M. Membrane technology for CO2 capture: from pilot-scale investigation of two-stage plant to actual system design. J. Membr. Sci., 2021, 624, 119137.
Lokhandwala, K. A.; Pinnau, I.; He, Z. J.; Amo, K. D.; DaCosta, A. R.; Wijmans, J. G.; Baker, R. W. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment. J. Membr. Sci., 2010, 346(2), 270–279.
Zhang, C. W.; Sheng, M. L.; Hu, Y. Q.; Yuan, Y.; Kang, Y. L.; Sun, X. A.; Wang, T.; Li, Q. H.; Zhao, X. S.; Wang, Z. Efficient facilitated transport polymer membrane for CO2/CH4 separation from oilfield associated gas. Membranes, 2021, 11(2), 118.
潘一, 徐利旋, 刘守辉, 孙林, 杨双春. 油田伴生气利用现状与前景展望. 特种油气藏, 2013, 20(1), 7–10.
胡苏阳, 花亦怀, 李秋英, 曾伟平. 天然气膜分离脱碳技术评述. 石化技术, 2021, 28(5), 54–55.
金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨. 化工学报, 2012, 63(1), 3–8.
Merkel, T. C.; Lin, H. Q.; Wei, X. T.; Baker, R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J. Membr. Sci., 2010, 359(1-2), 126–139.
0
浏览量
51
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构