浏览全部资源
扫码关注微信
贵州大学材料与冶金学院,贵阳 550025
*黄俊,E-mail: huangj@gzu.edu.cn
纸质出版日期:2024-07-20,
收稿日期:2023-10-09,
录用日期:2024-02-22
扫 描 看 全 文
杨宋, 吴庆, 罗福生, 张锦龙, 黄俊, 谢海波. 锌离子电池生物基凝胶电解质研究进展. 高分子通报, 2024, 37(7), 878–892
Yang, S.; Wu, Q.; Luo, F. S.; Zhang, J. L.; Huang, J.; Xie, H. B. Research progress of bio-based gel electrolytes for zinc ion batteries. Polym. Bull. (in Chinese), 2024, 37(7), 878–892
杨宋, 吴庆, 罗福生, 张锦龙, 黄俊, 谢海波. 锌离子电池生物基凝胶电解质研究进展. 高分子通报, 2024, 37(7), 878–892 DOI: 10.14028/j.cnki.1003-3726.2024.23.336.
Yang, S.; Wu, Q.; Luo, F. S.; Zhang, J. L.; Huang, J.; Xie, H. B. Research progress of bio-based gel electrolytes for zinc ion batteries. Polym. Bull. (in Chinese), 2024, 37(7), 878–892 DOI: 10.14028/j.cnki.1003-3726.2024.23.336.
生物基凝胶电解质锌离子电池环保低成本降解
Bio-based gel electrolyteZinc ion batteryEnvironmentally friendlyLow costDecomposition
Chu, S.; Majumdar, A.Opportunities and challenges for a sustainable energy future. Nature, 2012, 488, 294–303.
Armand, M.; Tarascon, J. M.Building better batteries. Nature, 2008, 451, 652–657.
Dunn, B.; Kamath, H.; Tarascon, J. M.Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058), 928–935.
Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y.Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem., 2010, 2(9), 760–765.
Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G.Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 2006, 311(5763), 977–980.
Shi, S. Q.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C. Y.; Xiao, R. J.Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B, 2016, 25(1), 018212.
Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K.Aqueous rechargeable Li and Na ion batteries. Chem. Rev., 2014, 114(23), 11788–11827.
Yi, J.; Wang, C. X.; Xia, Y. Y.Comparison of thermal stability between micro- and nano-sized materials for lithium-ion batteries. Electrochem. Commun., 2013, 33, 115–118.
Yi, J.; Li, X. P.; Hu, S. J.; Li, W. S.; Zhou, L.; Xu, M. Q.; Lei, J. F.; Hao, L. S.Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J. Power Sources, 2011, 196(16), 6670–6675.
Yi, J.; Hou, M. Y.; Bao, H. L.; Wang, C. X.; Wang, J. Q.; Xia, Y. Y.In-situ generation of Li2FeSiO4/C nanocomposite as cathode material for lithium ion battery. Electrochim. Acta, 2014, 133, 564–569.
Nie, W.; Cheng, H.; Sun, Q.; Liang, S.; Lu, X.; Lu, B.; Zhou, J.Design strategies toward high-performance Zn metal anode. Small Meth., 2023, e2201572.
Lee, J.; Ju, J. B.; Cho, W. I.; Cho, B. W.; Oh, S. H.Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta, 2013, 112, 138–143.
Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q.V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nanomicro Lett., 2019, 11(1), 25.
Yang, D.; Tan, H. T.; Rui, X. H.; Yu, Y.Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem. Energy Rev., 2019, 2(3), 395–427.
Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q.Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett., 2021, 6(3), 1015–1033.
Nie, C. H.; Wang, G. L.; Wang, D. D.; Wang, M. Y.; Gao, X. R.; Bai, Z. C.; Wang, N. N.; Yang, J.; Xing, Z.; Dou, S. X.Recent progress on Zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy Mater., 2023, 13(28), 2300606.
Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q.Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett., 2021, 6(3), 1015–1033.
Liu, Y. H.; Pharr, M.; Salvatore, G. A.Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 2017, 11(10), 9614–9635.
Sepúlveda, A.; Speulmanns, J.; Vereecken, P. M.Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery. Sci. Technol. Adv. Mater., 2018, 19(1), 454–464.
Huang, S.; Zhu, J. C.; Tian, J. L.; Niu, Z. Q.Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. Eur. J., 2019, 25(64), 14480–14494.
Yu, P.; Zeng, Y. X.; Zhang, H. Z.; Yu, M. H.; Tong, Y. X.; Lu, X. H.Flexible Zn-ion batteries: recent progresses and challenges. Small, 2019, 15(7), e1804760.
Fu, X. W.; Zhong, W. H.Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv. Energy Mater., 2019, 9(40), 1901774.
Xu, T.; Du, H. S.; Liu, H. Y.; Liu, W.; Zhang, X. Y.; Si, C. L.; Liu, P. W.; Zhang, K.Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater., 2021, 33(48), 2170381.
Wu, L.; Shi, X. Y.; Wu, Z. S.Recent advancements and perspectives of biodegradable polymers for super-capacitors. Adv. Funct. Mater., 2023, 33(16), 2211454.
Picheth, G. F.; Pirich, C. L.; Sierakowski, M. R.; Woehl, M. A.; Sakakibara, C. N.; de Souza, C. F.; Martin, A. A.; da Silva, R.; de Freitas, R. A.Bacterial cellulose in biomedical applications: a review. Int. J. Biol. Macromol., 2017, 104(Pt A), 97–106.
Hu, W. K.; Wang, Z. J.; Xiao, Y.; Zhang, S. M.; Wang, J. L.Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci., 2019, 7(3), 843–855.
Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y.Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater., 2018, 28(48), 1804560.
Dai, H. L.; Zhang, G. X.; Rawach, D.; Fu, C. Y.; Wang, C.; Liu, X. H.; Dubois, M.; Lai, C.; Sun, S. H.Polymer gel electrolytes for flexible supercapacitors: recent progress, challenges, and perspectives. Energy Storage Mater., 2021, 34, 320–355.
Tan, S. J.; Zeng, X. X.; Ma, Q.; Wu, X. W.; Guo, Y. G.Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Elec-trochem. Energy Rev., 2018, 1(2), 113–138.
Mo, F. N.; Chen, Z.; Liang, G. J.; Wang, D. H.; Zhao, Y. W.; Li, H. F.; Dong, B. B.; Zhi, C. Y.Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy Mater., 2020, 10(16), 2000035.
Liu, Z. X.; Wang, D. H.; Tang, Z. J.; Liang, G. J.; Yang, Q.; Li, H. F.; Ma, L. T.; Mo, F. N.; Zhi, C. Y.A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Mater., 2019, 23, 636–645.
Zhao, J.; Xing, T.; Li, Q.; Chen, Y.; Yao, W. S.; Jin, S. H.; Chen, S. S.Preparation of chitosan and carboxymethylcellulose-based polyelectrolyte complex hydrogel via SD-A-SGT method and its adsorption of anionic and cationic dye. J. Appl. Polym. Sci., 2020, 137(34), e48980.
Feng, Z. B.; Zuo, H. L.; Hu, J.; Gao, W. S.; Yu, B.; Ning, N. Y.; Tian, M.; Zhang, L. Q.Mussel-inspired highly stretchable, tough nanocomposite hydrogel with self-healable and near-infrared actuated performance. Ind. Eng. Chem. Res., 2020, 59(1), 166–174.
Huang, H.; Han, L.; Fu, X.; Wang, Y.; Yang, Z.; Pan, L.; Xu, M.A powder self-healable hydrogel electrolyte for flexible hybrid supercapacitors with high energy density and sustainability. Small, 2021, 17(10), e2006807.
Wang, K. P.; Yang, Y.; Zhang, Q.; Xiao, Z. Y.; Zong, L. B.; Ichitsubo, T.; Wang, L.Construction of supramolecular polymer hydrogel electrolyte with ionic channels for flexible supercapacitors. Mater. Chem. Front., 2021, 5(13), 5106–5114.
Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J.Supercapacitors: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater., 2014, 4(4), 1470017.
Hu, M. M.; Wang, J. Q.; Liu, J.; Wang, P. P.; Feng, Y. P.; Wang, H.; Nie, N. Y.; Wang, Y. Y.; Huang, Y.A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biode-gradability. Energy Storage Mater., 2019, 21, 174–179.
Boucard, N.; Viton, C.; Domard, A.New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 2005, 6(6), 3227–3237.
Shen, X. P.; Shamshina, J. L.; Berton, P.; Gurau, G.; Rogers, R. D.Hydrogels based on cellulose and chitin: Fabrication, properties, and applications. Green Chem., 2016, 18(1), 53–75.
张君妍, 孟思, 陈文萍, 成艳华, 朱美芳. 高力学强度细菌纤维素气凝胶纤维的连续化制备. 高分子学报, 2021, 52(01), 69–77.
Wang, H.; Du, H.; Liu, K.; Liu, H.; Xu, T.; Zhang, S.; Chen, X.; Zhang, R.; Li, H.; Xie, H.; Zhang, X.; Si, C.Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym., 2021, 266, 118107.
Xu, L.; Meng, T. T.; Zheng, X. Y.; Li, T. Y.; Brozena, A. H.; Mao, Y. M.; Zhang, Q.; Clifford, B. C.; Rao, J. C.; Hu, L. B.Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries. Adv. Funct. Mater., 2023, 33(27), 2302098.
Zhang, H. D.; Gan, X. T.; Song, Z. P.; Zhou, J. P.Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed., 2023, 62(13), e202217833.
张君妍, 孟思, 陈文萍, 成艳华, 朱美芳. 纤维素基气凝胶的制备及功能材料构建. 2021, 高分子学报, 52(1), 70–75.
Quan, Y. H.; Zhou, W. J.; Wu, T.; Chen, M. F.; Han, X.; Tian, Q. H.; Xu, J. L.; Chen, J. Z.Sorbitol-modified cellulose hydrogel electrolyte derived from wheat straws towards high-performance environmentally adaptive flexible zinc-ion batteries. Chem. Eng. J., 2022, 446, 137056.
Zhang, Y. N.; Qin, H. L.; Alfred, M.; Ke, H. Z.; Cai, Y. B.; Wang, Q. Q.; Huang, F. L.; Liu, B.; Lv, P. F.; Wei, Q. F.Reaction modifier system enable double-network hydrogel electrolyte for flexible zinc-air batteries with tolerance to extreme cold conditions. Energy Storage Mater., 2021, 42, 88–96.
Rinaudo, M.Chitin and chitosan: properties and applications. Prog. Polym. Sci., 2006, 31(7), 603–632.
刘阳, 王毅, 王云娟, 尹玉利, 熊菀伶, 冯晓祎. 可注射的壳聚糖水凝胶的制备及应用进展. 高分子通报, 2020, (5), 17–23.
Rinaudo, M.; Pavlov, G.; Desbrières, J.Influence of acetic acid concentration on the solubilization of chitosan. Polymer, 1999, 40(25), 7029–7032.
Khalil, H. P. S. A.; Saurabh, C. K.; Adnan, A. S.; Nurul Fazita, M. R.; Syakir, M. I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C. K.; Haafiz, M. K. M.; Dungani, R.A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr. Polym., 2016, 150, 216–226.
Suginta, W.; Khunkaewla, P.; Schulte, A.Elec-trochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev., 2013, 113(7), 5458–5479.
Fu, L.; Wang, A. W.; Lyu, F. C.; Lai, G. S.; Yu, J. H.; Lin, C. T.; Liu, Z.; Yu, A. M.; Su, W. T.A solid-state electrochemical sensing platform based on a supramolecular hydrogel. Sens. Actuat. B Chem., 2018, 262, 326–333.
Liu, Y. Q.; Gao, A. M.; Hao, J. N.; Li, X. L.; Ling, J. Z.; Yi, F. Y.; Li, Q. Z.; Shu, D.Soaking-free and self-healing hydrogel for wearable zinc-ion batteries. Chem. Eng. J., 2023, 452, 139605.
Almenara, N.; Gueret, R.; Huertas-Alonso, A. J.; Veettil, U. T.; Sipponen, M. H.; Lizundia, E.Lignin-chitosan gel polymer electrolytes for stable Zn electrodeposition. ACS Sustain. Chem. Eng., 2023, 11(6), 2283–2294.
Liu, Q.; Yu, Z. L.; Zhuang, Q. N.; Kim, J. K.; Kang, F. Y.; Zhang, B.Anti-fatigue hydrogel electrolyte for all-flexible Zn-ion batteries. Adv. Mater., 2023, 35(36), e2300498.
吴俊. 浅谈亲水胶体在饮料中的应用. 食品安全导刊, 2010, (5), 44–45.
刘根起, 赵晓鹏, 唐韬. 明胶水凝胶电刺激响应行为的研究. 高分子学报, 2003, (3), 398–402.
Zhou, J.; Li, Y.; Xie, L.; Xu, R.; Zhang, R.; Gao, M.; Tian, W.; Li, D.; Qiao, L.; Wang, T.; Cao, J.; Wang, D.; Hou, Y.; Fu, W.; Yang, B.; Zeng, J.; Chen, P.; Liang, K.; Kong, B.Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Mater. Today Energy, 2021, 21, 100712.
Zhou, J. J.; Zhang, R. H.; Xu, R.; Li, Y.; Tian, W.; Gao, M.; Wang, M.; Li, D. W.; Liang, X.; Xie, L.; Liang, K.; Chen, P.; Kong, B.Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Adv. Funct. Mater., 2022, 32(21), 2111406.
Jia, C. E.; Zhang, X. S.; Liang, S. J.; Fu, Y. C.; Liu, W. T.; Chen, J. Z.; Liu, X. Y.; Zhang, L. L.Environmentally adaptable hydrogel electrolyte with the triple interpenetrating network in the flexible zinc-ion battery with ultralong stability. J. Power Sources, 2022, 548, 232072.
Yang, H. Z.; Ji, X. W.; Tan, Y. T.; Liu, Y.; Ran, F.Modified supramolecular carboxylated chitosan as hydrogel electrolyte for quasi-solid-state super-capacitors. J. Power Sources, 2019, 441, 227174.
张岩峰, 张琨, 王闯, 王兵杰, 彭慧胜. 海藻酸钙基凝胶电解质用于纤维超级电容器的连续化制备. 高分子学报, 2024, 55(3), 287–295.
Pawar, S. N.; Edgar, K. J.Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 2012, 33(11), 3279–3305.
Lee, K. Y.; Mooney, D. J.Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106–126.
Shang, W. S.; Zhu, J. H.; Liu, Y.; Kang, L. T.; Liu, S. Y.; Huang, B. K.; Song, J. S.; Li, X. M.; Jiang, F. Y.; Du, W.; Gao, Y. F.; Luo, H. J.Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces, 2021, 13(21), 24756–24764.
Wang, J. W.; Huang, Y.; Liu, B. B.; Li, Z. X.; Zhang, J. Y.; Yang, G. S.; Hiralal, P.; Jin, S. Y.; Zhou, H.Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater., 2021, 41, 599–605.
Zhong, X.; Tian, P. S.; Chen, C.; Meng, X. C.; Mi, H. Y.; Shi, F. W.Preparation and interface stability of alginate-based gel polymer electrolyte for rechargeable aqueous zinc ion batteries. J. Electroanal. Chem., 2022, 927, 116968.
Zhang, B. Y.; Qin, L. P.; Fang, Y.; Chai, Y. Z.; Xie, X. S.; Lu, B. G.; Liang, S. Q.; Zhou, J.Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull., 2022, 67(9), 955–962.
Shao, Y. Y.; Zhao, J.; Hu, W. G.; Xia, Z.; Luo, J. R.; Zhou, Y. J.; Zhang, L.; Yang, X. Z.; Ma, N.; Yang, D. Z.; Shi, Q. W.; Sun, J. Y.; Zhang, L.; Hui, J. S.; Shao, Y. L.Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries. Small, 2022, 18(10), e2107163.
Chelfouh, N.; Coquil, G.; Rousselot, S.; Foran, G.; Briqueleur, E.; Shoghi, F.; Caradant, L.; Dollé, M.Apple pectin-based hydrogel electrolyte for energy storage applications. ACS Sustain. Chem. Eng., 2022, 10(48), 15802–15812.
Park, J. H.; Hyun Park, S.; Joung, D.; Kim, C.Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem. Eng. J., 2022, 433, 133532.
0
浏览量
89
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构