浏览全部资源
扫码关注微信
1..国家自然科学基金委员会工程与材料科学部,北京 100085
2..华中科技大学,武汉 430074
3..南开大学,天津 300071
4..中国科学院大学,北京 101408
*丁玉琴,E-mail: dingyq@nsfc.gov.cn
纸质出版日期:2024-04-20,
收稿日期:2023-12-11,
录用日期:2024-01-11
扫 描 看 全 文
丁玉琴, 马劲, 饶静一, 朱春雷, 蔡芸皓. 2023年度有机高分子材料学科国家自然科学基金管理工作综述及相关领域近期重要研究进展. 高分子通报, 2024, 37(4), 419–429
Ding, Y. Q.; Ma, J.; Rao, J. Y.; Zhu, C. L.; Cai, Y, H. Review on the management of science foundation projects in the organic polymer materials discipline of the national natural science foundation of China in 2023 and recent significant advancement in the field of organic polymer materials. Polym. Bull. (in Chinese), 2024, 37(4), 419–429
丁玉琴, 马劲, 饶静一, 朱春雷, 蔡芸皓. 2023年度有机高分子材料学科国家自然科学基金管理工作综述及相关领域近期重要研究进展. 高分子通报, 2024, 37(4), 419–429 DOI: 10.14028/j.cnki.1003-3726.2024.23.407.
Ding, Y. Q.; Ma, J.; Rao, J. Y.; Zhu, C. L.; Cai, Y, H. Review on the management of science foundation projects in the organic polymer materials discipline of the national natural science foundation of China in 2023 and recent significant advancement in the field of organic polymer materials. Polym. Bull. (in Chinese), 2024, 37(4), 419–429 DOI: 10.14028/j.cnki.1003-3726.2024.23.407.
介绍了2023年度国家自然科学基金委员会有机高分子材料学科基金项目的申请、受理、评审和资助情况;分析了2022年度学科科学基金结题项目的绩效评估情况;综述了有机高分子材料相关领域的近期重要进展并阐述了学科对未来工作的展望。
The applications
acceptance
review
and funding of projects in the organic polymer materials discipline of the national natural science foundation of China in 2023 are introduced. The performance evaluations of the final projects in 2022 are analyzed. In addition
recent significant advancement in the field of organic polymer materials are discussed. Lastly
the prospects for future work in the discipline are elaborated.
有机高分子材料学科国家自然科学基金科学基金改革
Organic polymer materials disciplineNational natural science foundation of ChinaScience foundation reform
李静海. 深化科学基金改革 推动基础研究高质量发展. 中国科学基金, 2020, 34(5), 529–532.
高瑞平. 以系统思维和科学谋划开创科学基金改革发展新局面. 中国科学基金, 2023, 37(1), 1–2.
丁玉琴, 马劲, 李晓锋, 王彬. 2021年度有机高分子材料学科国家自然科学基金管理工作综述. 高分子通报, 2022, (10), 1–8.
丁玉琴, 马劲, 饶静一, 薛佳佳, 张建齐. 2022年度有机高分子材料学科国家自然科学基金管理工作综述. 高分子通报, 2023, (36), 769–780.
杨好好, 郝红全, 安浩, 赵英弘, 郑知敏, 杨列勋, 王长锐. 新时期国家自然科学基金分类申请与评审改革成效. 中国科学基金, 2022, 36(5), 675–684.
国家自然科学基金委员会. 2023年度国家自然科学基金项目指南. 北京: 科学出版社, 2023.
Tan, C.; Zou, C.; Chen, C. L. An ionic cluster strategy for performance improvements and product morphology control in metal-catalyzed olefin–polar monomer copolymerization. J. Am. Chem. Soc., 2022, 144(5), 2245–2254.
Zou, C.; Si, G. F.; Chen, C. L. A general strategy for heterogenizing olefin polymerization catalysts and the synthesis of polyolefins and composites. Nat. Commun., 2022, 13(1), 1954.
Zou, C.; Wang, Q.; Si, G. F.; Chen, C. L. A co-anchoring strategy for the synthesis of polar bimodal polyethylene. Nat. Commun., 2023, 14(1), 1442.
Li, J.; Peng, D.; Tan, C.; Chen, C. L. Outer-shell self-supported nickel catalysts for the synthesis of polyolefin composites. Angew. Chem. Int. Ed., 2023, 62(18), e202300359.
Chen, S. Y.; Pan, R. C.; Chen, M.; Liu, Y.; Chen, C. L.; Lu, X. B. Synthesis of nonalternating polyketones using cationic diphosphazane monoxide-palladium complexes. J. Am. Chem. Soc., 2021, 143(28), 10743–10750.
Liu, Z. H.; Fang, Z. Z.; Zheng, N.; Yang, K. X.; Sun, Z.; Li, S. J.; Li, W.; Wu, J. J.; Xie, T. Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nat. Chem., 2023, 15(12), 1773–1779.
Chen, S. Q.; Zhong, Y.; Fan, W. F.; Xiang, J. J.; Wang, G. W.; Zhou, Q.; Wang, J. Q.; Geng, Y.; Sun, R.; Zhang, Z.; Piao, Y.; Wang, J. G.; Zhuo, J. Y.; Cong, H. L.; Jiang, H. P.; Ling, J.; Li, Z. C.; Yang, D. D.; Yao, X.; Xu, X.; Zhou, Z. X.; Tang, J. B.; Shen, Y. Q. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat. Biomed. Eng., 2021, 5(9), 1019–1037.
Wang, Q.; Liang, Q. R.; Dou, J. X.; Zhou, H.; Zeng, C. C.; Pan, H. M.; Shen, Y. Q.; Li, Q.; Liu, Y.; Leong, D. T.; Jiang, W.; Wang, Y. C. Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours. Nat. Nanotechnol., 2023, 19(1), 95–105.
Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater., 2015, 27(7), 1170–1174.
Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y. F.; Zou, Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140–1151.
Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C.; Min, J.; Zhang, Y.; Xie, Z. Q.; Yi, Y. P.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy, 2021, 6, 605–613.
Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N.; Zhou, Z. C.; Zeng, R.; Zhu, H. M.; Chen, C. C.; MacKenzie, R. C. I.; Zou, Y. C.; Nelson, J.; Zhang, Y. M.; Sun, Y. M.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater., 2022, 21(6), 656–663.
Zhang, Z. G.; Yang, Y. K.; Yao, J.; Xue, L. W.; Chen, S. S.; Li, X. J.; Morrison, W.; Yang, C.; Li, Y. F. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed., 2017, 56(43), 13503–13507.
Zhuo, H. M.; Li, X. J.; Zhang, J. Y.; Qin, S. C.; Guo, J.; Zhou, R. M.; Jiang, X.; Wu, X. X.; Chen, Z. K.; Li, J.; Meng, L.; Li, Y. F. Giant molecule acceptor enables highly efficient organic solar cells processed using non-halogenated solvent. Angew. Chem. Int. Ed., 2023, 62(26), e202303551.
Xiong, H. G.; Lin, Q. J.; Lu, Y.; Zheng, D.; Li, Y. W.; Wang, S.; Xie, W. B.; Li, C.Q.; Zhang, X.; Lin, Y. Z.; Wang, Z. X.; Shi, Q. Q.; Marks, T. J.; Huang, H. A general room temperature Suzuki-Miyaura polymerization process for organic electronics. Nat. Mater., 2024, DOI: 10.1038/s41563-023-01794-9.
Tang, H. R.; Liang, Y. Y.; Liu, C. C.; Hu, Z. C.; Deng, Y. F.; Guo, H.; Yu, Z. D.; Song, A.; Zhao, H. Y.; Zhao, D. K.; Zhang, Y. Z.; Guo, X. G.; Pei, J.; Ma, Y. G.; Cao, Y.; Huang, F. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature, 2022, 611(7935), 271–277.
Hu, Y. X.; Miao, J. S.; Hua, T.; Huang, Z. Y.; Qi, Y. Y.; Zou, Y.; Qiu, Y. T.; Xia, H.; Liu, H.; Cao, X. S.; Yang, C. L. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat. Photonics, 2022, 16, 803–810.
Li, M. K.; Xie, W. T.; Cai, X. Y.; Peng, X. M.; Liu, K. K.; Gu, Q.; Zhou, J. D.; Qiu, W. D.; Chen, Z. J.; Gan, Y. Y.; Su, S. J. Molecular engineering of sulfur-bridged polycyclic emitters towards tunable TADF and RTP electroluminescence. Angew. Chem. Int. Ed., 2022, 61(35), e202209343.
Meng, G. Y.; Dai, H. Y.; Wang, Q.; Zhou, J. P.; Fan, T. J.; Zeng, X.; Wang, X.; Zhang, Y. W.; Yang, D. Z.; Ma, D. G.; Zhang, D. D.; Duan, L. High-efficiency and stable short-delayed fluorescence emitters with hybrid long- and short-range charge-transfer excitations. Nat. Commun., 2023, 14, 2394.
0
浏览量
149
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构