浏览全部资源
扫码关注微信
中石化 (北京)化工研究院有限公司,北京 100013
*王蔼廉,E-mail: wangailian.bjhy@sinopec.com;张韬毅,E-mail: zhangtaoy.bjhy@sinopec.com
*王蔼廉,E-mail: wangailian.bjhy@sinopec.com;张韬毅,E-mail: zhangtaoy.bjhy@sinopec.com
纸质出版日期:2024-02-20,
收稿日期:2023-05-12,
录用日期:2023-06-19
扫 描 看 全 文
引用:王蔼廉, 计文希, 李晶, 武佳宁, 张龙贵, 张韬毅. 聚苯并咪唑/磷酸掺杂高温质子交换膜的研究进展. 高分子通报, 2024, 37(2), 137–149
Citation: Wang, A. L.; Ji, W. X.; Li, J.; Wu, J. N.; Zhang, L. G.; Zhang, T. Y. The research progress of phosphoric acid doped polybenizimidazole based high-temperature proton exchange membrane. Polym. Bull. (in Chinese), 2024, 37(2), 137–149
引用:王蔼廉, 计文希, 李晶, 武佳宁, 张龙贵, 张韬毅. 聚苯并咪唑/磷酸掺杂高温质子交换膜的研究进展. 高分子通报, 2024, 37(2), 137–149 DOI: 10.14028/j.cnki.1003-3726.2024.23.165.
Citation: Wang, A. L.; Ji, W. X.; Li, J.; Wu, J. N.; Zhang, L. G.; Zhang, T. Y. The research progress of phosphoric acid doped polybenizimidazole based high-temperature proton exchange membrane. Polym. Bull. (in Chinese), 2024, 37(2), 137–149 DOI: 10.14028/j.cnki.1003-3726.2024.23.165.
随着燃料电池技术的高速发展,提升燃料电池的性能和寿命,降低整个系统的成本成为制约其推广应用的瓶颈问题。质子交换膜作为质子交换膜燃料电池的核心元件,对整个系统的运行起着至关重要的作用。聚苯并咪唑质子交换膜可用于高温燃料电池系统,增强电池对杂质的耐受度,简化水热管理,进而降低电池的使用成本,是一种理想的Nafion替代材料。但传统的聚苯并咪唑质子交换膜负载磷酸后机械强度下降,在电池运行过程中磷酸易流失,导致电池性能的衰减。本文综述了近些年来不同研究者从不同角度制备的聚苯并咪唑质子交换膜,归纳可以借鉴的策略,为后续的研究提供参考。
With the rapid development of fuel cells
the balance between the improvement of performance and lifetime
and the reduction of the cost of the whole system become a bottleneck problem which restricts its application. As the key component of fuel cell
proton exchange membrane ensures the operation of the whole system. Polybenzimidazole (PBI) based high temperature proton exchange membrane (PEM) can greatly enhance the impurity tolerance of fuel cell and simplify its hydrothermal management
which reduce the cost. Therefore
it is an ideal Nafion alternative material. However
traditional PBI based PEM is easy to loss phosphoric acid during the operation and after acid loading
the mechanical strength decreases
resulting in the attenuation of battery performance. Aiming at the problems of PBI based proton exchange membrane
this paper reviews different methods that researchers attempted from various angles
hoping to summarize the general strategies that can be used for reference in the follow-up research.
聚苯并咪唑质子交换膜高温燃料电池
PolybenizimidazolePorton exchange membraneHigh-temperature fuel cell
Savadogo, O. Emerging membranes for electrochemical systems. J. Power Sources, 2004, 127(1-2), 135–161.
Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev., 2004, 104(10), 4637–4678.
Li, Q. F.; He, R. H.; Jensen, J. O.; Bjerrum, N. J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃. Chem. Mater., 2003, 15(26), 4896–4915.
Watari, T.; Fang, J. H.; Tanaka, K.; Kita, H.; Okamoto, K. I.; Hirano, T. Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4, 4′-bis(4-aminophenoxy)biphenyl-3,3′-disulfonic acid. J. Membr. Sci., 2004, 230(1-2), 111–120.
Kerres, J. A. Development of ionomer membranes for fuel cells. J. Membr. Sci., 2001, 185(1), 3–27.
Lufrano, F.; Gatto, I.; Staiti, P.; Antonucci, V.; Passalacqua, E. Sulfonated polysulfone ionomer membranes for fuel cells. Solid State Ion., 2001, 145(1-4), 47–51.
Xing, P. X.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Kaliaguine, S. Sulfonated poly(aryl ether ketone)s containing the hexafluoroisopropylidene diphenyl moiety prepared by direct copolymerization, as proton exchange membranes for fuel cell application. Macromolecules, 2004, 37(21), 7960–7967.
Gil, M.; Ji, X. L.; Li, X. F.; Na, H.; Eric Hampsey, J.; Lu, Y. F. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications. J. Membr. Sci., 2004, 234(1-2), 75–81.
Gao, Y.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.; Li, X. A.; Kaliaguine, S. Synthesis of poly(arylene ether ether ketone ketone) copolymers containing pendant sulfonic acid groups bonded to naphthalene as proton exchange membrane materials. Macromolecules, 2004, 37(18), 6748–6754.
Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev., 2004, 104(10),4587–4612.
Haider, R.; Wen, Y. C.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Yuan, X. X.; Song, S. Q.; Zhang, J. J. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chem. Soc. Rev., 2021, 50(2), 1138–1187.
Malhotra, S.; Datta, R. Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells. J. Electrochem. Soc., 1997, 144(2), L23–L26.
Shao, Y. Y.; Yin, G. P.; Wang, Z. B.; Gao, Y. Z. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J. Power Sources, 2007, 167(2), 235–242.
Haque, M. A.; Sulong, A. B.; Loh, K. S.; Majlan, E. H.; Husaini, T.; Rosli, R. E. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review. Int. J. Hydrog. Energy, 2017, 42(14), 9156–9179.
Yang, C.; Costamagna, P.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources, 2001, 103(1), 1–9.
Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M. Acid-doped polybenzimidazoles: a new polymer electrolyte. J. Electrochem. Soc., 1995, 142(7), L121–L123.
Neuse, E. W. Aromatic polybenzimidazoles. Syntheses, properties, and applications. Synthesis and Degradation Rheology and Extrusion. Berlin/Heidelberg: Springer-Verlag, 2006, 1–42.
Chung, T. S. A critical review of polybenzimidazoles. Polym. Rev., 1997, 37(2), 277–301.
Aili, D.; Yang, J. S.; Jankova, K.; Henkensmeier, D.; Li, Q. F. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides. J. Mater. Chem. A, 2020, 8(26), 12854–12886.
Vogel, H.; Marvel, C. S. Polybenzimidazoles. II. J. Polym. Sci. A, 1963, 1(5), 1531–1541.
Vogel, H.; Marvel, C. S. Polybenzimidazoles, new thermally stable polymers. J. Polym. Sci., 1961, 50(154), 511–539.
Iwakura, Y.; Uno, K.; Imai, Y. Polyphenylenebenzimidazoles. J. Polym. Sci. A, 1964, 2(6), 2605–2615.
He, R. H.; Sun, B. Y.; Yang, J. S.; Che, Q. T. Synthesis of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and poly(2,5-benzimidazole) by microwave irradiation. Chem. Res. Chin. Univ., 2009, 25 (4), 585–589.
Ueda, M.; Sato, M.; Mochizuki, A. Poly(benzimidazole) synthesis by direct reaction of diacids and diamines. Macromolecules, 1985, 18(12), 2723–2726.
Eaton, P. E.; Carlson, G. R.; Lee, J. T. Phosphorus pentoxide-methanesulfonic acid. Convenient alternative to polyphosphoric acid. J. Org. Chem., 1973, 38(23), 4071–4073.
Higgins, J.; Marvel, C. S. Benzimidazole polymers from aldehydes and tetraamines. J. Polym. Sci. Part A-1, 1970, 8(1), 171–177.
Fishel, K. J.; Gulledge, A. L.; Pingitore, A. T.; Hoffman, J. P.; Steckle, Jr, W. P.; Benicewicz, B. C. Solution polymerization of polybenzimidazole. J. Polym. Sci. A, 2016, 54(12), 1795–1802.
Kim, E. K.; Lee, S. Y.; Nam, S. Y.; Yoo, S. J.; Kim, J. Y.; Jang, J. H.; Henkensmeier, D.; Kim, H. J.; Lee, J. C. Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions. Polym. Int., 2017, 66(12), 1812–1818.
Hedberg, F. L.; Marvel, C. S. A new single-step process for polybenzimidazole synthesis. J. Polym. Sci., 1974, 12(8), 1823–1828.
Weber, J. Nanostructured poly(benzimidazole): from mesoporous networks to nanofibers. ChemSusChem, 2010, 3(2), 181–187.
Xing, B.; Savadogo, O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem. Commun., 2000, 2(10), 697–702.
Lobato, J.; Cañizares, P.; Rodrigo, M. A.; Linares, J. J.; Manjavacas, G. Synthesis and characterisation of poly[2, 2-(m-phenylene)-5,5-bibenzimidazole] as polymer elec-trolyte membrane for high temperature PEMFCs. J. Membr. Sci., 2006, 280(1-2), 351–362.
Zeng, L.; Zhao, T. S.; An, L.; Zhao, G.; Yan, X. H. A high-performance sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention for anion exchange membrane fuel cells. Energy Environ. Sci., 2015, 8(9), 2768–2774.
Asensio, J. A.; Borrós, S.; Gómez-Romero, P. Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J. Polym. Sci. A, 2002, 40(21), 3703–3710.
Asensio, J. A.; Gómez-Romero, P. Recent developments on proton conduc-ting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells, 2005, 5(3), 336–343.
Kim, H. J.; An, S. J.; Kim, J. Y.; Moon, J. K.; Cho, S. Y.; Eun, Y. C.; Yoon, H. K.; Park, Y.; Kweon, H. J.; Shin, E. M. Polybenzimidazoles for high temperature fuel cell applications. Macromol. Rapid Commun., 2004, 25(15), 1410–1413.
Kim, H. J.; Cho, S. Y.; An, S. J.; Eun, Y. C.; Kim, J. Y.; Yoon, H. K.; Kweon, H. J.; Yew, K. H. Synthesis of poly(2,5-benzimidazole) for use as a fuel-cell mem-brane. Macromol. Rapid Commun., 2004, 25(8), 894–897.
Kim, T. H.; Lim, T. W.; Lee, J. C. High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. J. Power Sources, 2007, 172(1), 172–179.
Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; del Castillo, L. F.; Compañ, V. Recent progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) fuel cell applications. Polymers, 2020, 12(9), 1861.
Berber, M. R.; Nakashima, N. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions. J. Membr. Sci., 2019, 591, 117354.
Li, J.; Li, X. J.; Zhao, Y.; Lu, W. T.; Shao, Z. G.; Yi, B. L. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte. ChemSusChem, 2012, 5(5), 896–900.
Yu, S.; Benicewicz, B. C. Synthesis and properties of functionalized polybenzimidazoles for high-temperature PEMFCs. Macromolecules, 2009, 42(22), 8640–8648.
Chen, J. C.; Chen, P. Y.; Liu, Y. C.; Chen, K. H. Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications. J. Membr. Sci., 2016, 513, 270–279.
Wu, H. C.; Wang, W. W.; Ji, J. Q.; Li, H.; Li, J.; Zhang, W. Y.; Li, K. D.; Pei, Q.; Zhang, X. D.; Zhang, S. J.; Li, W.; Gong, C. L. Thermal cure-induced crosslinked polybenzimidazole containing 4,5-diazafluorene and pyridine for high-temperature proton exchange membrane. J. Power Sources, 2023, 567, 232972.
Singha, S.; Jana, T.; Modestra, J. A.; Naresh Kumar, A.; Mohan, S. V. Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells. J. Power Sources, 2016, 317, 143–152.
Henkensmeier, D.; Cho, H.; Brela, M.; Michalak, A.; Dyck, A.; Germer, W.; Duong, N. M. H.; Jang, J. H.; Kim, H. J.; Woo, N. S.; Lim, T. H. Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO). Int. J. Hydrog. Energy, 2014, 39(6), 2842–2853.
Peron, J.; Ruiz, E.; Jones, D. J.; Rozière, J. Solution sulfonation of a novel polybenzimidazole. J. Membr. Sci., 2008, 314(1-2), 247–256.
Molleo, M. A.; Chen, X.; Ploehn, H. J.; Benicewicz, B. C. High polymer content 2,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells, 2015, 15(1), 150–155.
Sannigrahi, A.; Arunbabu, D.; Sankar, R. M.; Jana, T. Tuning the molecular properties of polybenzimidazole by copolymerization. J. Phys. Chem. B, 2007, 111(42), 12124–12132.
Chen, X. M.; Qian, G. Q.; Molleo, M. A.; Benicewicz, B. C.; Ploehn, H. J. High temperature creep behavior of phosphoric acid-polybenzimidazole gel membranes. J. Polym. Sci. B, 2015, 53(21), 1527–1538.
Sannigrahi, A.; Ghosh, S.; Maity, S.; Jana, T. Structurally isomeric monomers directed copolymerization of polybenzimidazoles and their properties. Polymer, 2010, 51(25), 5929–5941.
Pingitore, A. T.; Huang, F.; Qian, G. Q.; Benicewicz, B. C. Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices. ACS Appl. Energy Mater., 2019, 2(3), 1720–1726.
Satheesh, K. B.; Sana, B.; Unnikrishnan, G.; Jana, T.; Santhosh Kumar, K. S. Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polym. Chem., 2020, 11(5), 1043–1054.
Seel, D. C.; Benicewicz, B. C. Polyphenylquinoxaline-based proton exchange membranes synthesized via the PPA process for high temperature fuel cell systems. J. Membr. Sci., 2012, 405-406, 57–67.
Yang, J. S.; Li, Q. F.; Cleemann, L. N.; Xu, C. X.; Jensen, J. O.; Pan, C.; Bjerrum, N. J.; He, R. H. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. J. Mater. Chem., 2012, 22(22), 11185–11195.
Chen, S. X.; Pan, H. Y.; Chang, Z. H.; Jin, M.; Pu, H. T. Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics, 2019, 25(5), 2255–2265.
Sun, H.; Wang, S.; Cui, Y. H.; Yong, Z. P.; Liang, D.; Wang, X. D.; Wang, X. R.; Li, C. L.; Pan, F.; Wang, Z. Branched polybenzimidazole/polymeric ionic liquid cross-linked membranes with high proton conductivity and mechanical properties for HT-PEM applications. Int. J. Hydrog. Energy, 2023, 48(14), 5618–5629.
Peng, S. S.; Wu, X. M.; Yan, X. M.; Gao, L.; Zhu, Y. Z.; Zhang, D. S.; Li, J.; Wang, Q.; He, G. H. Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chains for vanadium flow batteries. J. Mater. Chem. A, 2018, 6(9), 3895–3905.
Wang, J.; Liu, G. L.; Wang, A. L.; Ji, W. X.; Zhang, L. G.; Zhang, T. Y.; Li, J.; Pan, H. F.; Tang, H. L.; Zhang, H. N. Novel N-alkylation synthetic strategy of imidazolium cations grafted polybenzimidazole for high temperature proton exchange membrane fuel cells. J. Membr. Sci., 2023, 669, 121332.
Sukumar, P. R.; Wu, W. C.; Markova, D.; Ünsal, Ö.; Klapper, M.; Müllen, K. Functionalized poly(benzimidazole)s as membrane materials for fuel cells. Macromol. Chem. Phys., 2007, 208(19-20), 2258–2267.
Yang, J. S.; Aili, D.; Li, Q. F.; Xu, Y. X.; Liu, P. P.; Che, Q. T.; Jensen, J. O.; Bjerrum, N. J.; He, R. H. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polym. Chem., 2013, 4(17), 4768–4775.
Li, X. B.; Wang, P.; Liu, Z. C.; Peng, J. W.; Shi, C. Y.; Hu, W.; Jiang, Z. H.; Liu, B. J. Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells. J. Power Sources, 2018, 393, 99–107.
He, D. L.; Liu, G. L.; Wang, A. L.; Ji, W. X.; Wu, J. N.; Tang, H. L.; Lin, W. R.; Zhang, T. Y.; Zhang, H. N. Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells. J. Membr. Sci., 2022, 650, 120442.
Tang, T. H.; Su, P. H.; Liu, Y. C.; Yu, T. L. Polybenzimidazole and benzyl-methyl-phosphoric acid grafted polybenzimidazole blend crosslinked membrane for proton exchange membrane fuel cells. Int. J. Hydrog. Energy, 2014, 39(21), 11145–11156.
Kerres, J.; Atanasov, V. Cross-linked PBI-based high-temperature membranes: stability, conductivity and fuel cell performance. Int. J. Hydrog. Energy, 2015, 40(42), 14723–14735.
Søndergaard, T.; Cleemann, L. N.; Becker, H.; Aili, D.; Steenberg, T.; Hjuler, H. A.; Seerup, L.; Li, Q. F.; Jensen, J. O. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole. J. Power Sources, 2017, 342, 570–578.
Yang, J. S.; Jiang, H. X.; Gao, L. P.; Wang, J.; Xu, Y. X.; He, R. H. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy, 2018, 43(6), 3299–3307.
Lu, W. T.; Zhang, G.; Li, J.; Hao, J. K.; Wei, F.; Li, W. H.; Zhang, J. Y.; Shao, Z. G.; Yi, B. L. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells. J. Power Sources, 2015, 296, 204–214.
Wang, L.; Liu, Z. R.; Liu, Y.; Wang, L. Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N―H sites: towards high-performance high-temperature proton exchange membranes for fuel cells. J. Membr. Sci., 2019, 583, 110–117.
Yu, D.; Cui, Y. H.; Wang, S.; Wang, X. D.; Yong, Z. P.; Sun, H.; Wang, X. R.; Li, C. L.; Pan, F.; Wang, Z. Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes. Int. J. Hydrog. Energy, 2023, 48(24), 9023–9036.
Guo, T. G.; Wang, Y. X.; Ju, Q.; Kang, S. Y.; Chao, G.; Chen, X. L.; Li, R. Y.; Lv, Z. X.; Shen, Y. H.; Li, N. W.; Geng, K. Crosslinked polybenzimidazole high temperature-proton exchange membranes with a polymers of intrinsic microporosity (PIM) macromolecular crosslinker. J. Membr. Sci., 2023, 675, 121528.
Seel, D.; Benicewicz, B.; Xiao, L.; Schmidt, T. High‐temperature polybenzimidazol‐based membranes. Handbook of Fuel Cells, 2010.
Xiao, L. X.; Zhang, H. F.; Scanlon, E.; Ramanathan, L. S.; Choe, E. W.; Rogers, D.; Apple, T.; Benicewicz, B. C. High-temperature polybenzimidazole fuel cell membranes via a sol-gel process. Chem. Mater., 2005, 17(21), 5328–5333.
Yang, J. S.; He, R. H. Preparation and characterization of polybenzimidazole membranes prepared by gelation in phosphoric acid. Polym. Adv. Technol., 2010, 21(12), 874–880.
A Perry, K.; L More, K.; Andrew Payzant, E.; Meisner, R. A.; Sumpter, B. G.; Benicewicz, B. C. A comparative study of phosphoric acid-doped m-PBI membranes. J. Polym. Sci. B, 2014, 52(1), 26–35.
Liu, Z. Y.; Tsou, Y. M.; Calundann, G.; de Castro, E. New process for high temperature polybenzimidazole membrane production and its impact on the membrane and the membrane electrode assembly. J. Power Sources, 2011, 196(3), 1055–1060.
Kerres, J.; Schönberger, F.; Chromik, A.; Häring, T.; Li, Q.; Jensen, J. O.; Pan, C.; Noyé, P.; Bjerrum, N. J. Partially fluorinated arylene polyethers and their ternary blend membranes with PBI and H3PO4. Part I. Synthesis and characterisation of polymers and binary blend membranes. Fuel Cells, 2008, 8(3-4), 175–187.
Wang, P.; Liu, Z. C.; Li, X. B.; Peng, J. W.; Hu, W.; Liu, B. J. Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chem. Commun., 2019, 55(46), 6491–6494.
Wu, Y. N.; Liu, X. T.; Yang, F.; Lee Zhou, L.; Yin, B. B.; Wang, P.; Wang, L. Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks. J. Membr. Sci., 2021, 630, 119288.
Hu, J.; Luo, J. S.; Wagner, P.; Conrad, O.; Agert, C. Anhydrous proton conducting membranes based on electron-deficient nanoparticles/PBI-OO/PFSA composites for high-temperature PEMFC. Electrochem. Commun., 2009, 11(12), 2324–2327.
Wang, P.; Lin, J. J.; Wu, Y. N.; Wang, L. Construction of high-density proton transport channels in phosphoric acid doped polybenzimidazole membranes using ionic liquids and metal-organic frameworks. J. Power Sources, 2023, 560, 232665.
0
浏览量
217
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构