浏览全部资源
扫码关注微信
1..山西铁道职业技术学院,太原 030013
2..山西省应用化学研究所(有限公司),涂装高分子功能材料山西省重点实验室,太原 030027
*石红翠,E-mail: soniashc@163.com
纸质出版日期:2024-02-20,
收稿日期:2023-06-21,
录用日期:2023-08-15
扫 描 看 全 文
引用:赵玉梅, 张博, 刘美琴, 石红翠. 接触角法研究氨基甲酸酯基/脲键对聚酯型聚氨酯附着牢度的影响. 高分子通报, 2024, 37(2), 245–256
Citation: Zhao, Y. M.; Zhang, B.; Liu, M. Q.; Shi, H. C. Study on the effect of urethane/urea on the adhesion fastness of polyester polyurethane by contact angle. Polym. Bull. (in Chinese), 2024, 37(2), 245–256
引用:赵玉梅, 张博, 刘美琴, 石红翠. 接触角法研究氨基甲酸酯基/脲键对聚酯型聚氨酯附着牢度的影响. 高分子通报, 2024, 37(2), 245–256 DOI: 10.14028/j.cnki.1003-3726.2024.23.210.
Citation: Zhao, Y. M.; Zhang, B.; Liu, M. Q.; Shi, H. C. Study on the effect of urethane/urea on the adhesion fastness of polyester polyurethane by contact angle. Polym. Bull. (in Chinese), 2024, 37(2), 245–256 DOI: 10.14028/j.cnki.1003-3726.2024.23.210.
以聚酯二元醇XCP-2000PM (PM)为软段,合成了系列具有不同氨基甲酸酯基/脲键摩尔比的聚酯型聚氨酯(PU),通过接触角法研究氨基甲酸酯基/脲键摩尔比对聚酯型聚氨酯胶膜表面能,及双向拉伸聚对苯二甲酸乙二醇酯聚酯薄膜(BOPET)与上述聚酯型聚氨酯之间黏附功的影响,并将其与BOPET粘结,研究氨基甲酸酯基/脲键摩尔比对水煮前后实际附着牢度的影响,并对其耐热性进行研究。结果表明:随着氨基甲酸酯基/脲键摩尔比的改变,表面能与黏附功的变化较小,表面能以非极性Lifshitz-vander Waals分量
http://notExist.jpg
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53732480&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53732479&type=
为主,黏附功以非极性
http://notExist.jpg
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53732482&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=53732481&type=
为主,二者中的酸碱作用贡献较小,但PU-P1、PU-N1表现相对较强的酸性作用。实际测试的附着牢度与理论黏附功和表面能存在一定的差异,当氨基甲酸酯基/脲键为10/90时,PU-P1、PU-N1的黏附功相对较低,因表面能中的酸碱作用及较好的润湿铺展性,而使实际附着牢度相对较好;PU-B1的黏附功最大,较大的表观黏度使其实际附着牢度最小;当氨基甲酸酯基/脲键为40/60时,附着牢度相对最好,与理论黏附功、表面能具有较好的一致性。涂层试样水煮30 min后,附着牢度均存在一定程度的下降,PU-N、PU-E能保持较好的附着牢度,而PU-B下降明显。随着氨基甲酸酯基/脲键摩尔比增大,聚氨酯初始热分解温度
T
5%
及
T
max
总体呈下降趋势,其中PU-B的
T
5%
最高,而PU-P
T
5%
最低。
A series of polyester polyurethanes (PU) with different molar ratios of urethane/urea were synthesized by using polyester diol XCP-2000PM (PM) as the soft segment. The influence of urethane/urea on the surface energy of polyester polyurethane film and the adhesion work between bioriented stretching polyester film (BOPET) and PU were studied by contact angle test. The influence of urethane/urea molar ratio on adhesion fastness before and after boiling was studied when by bonded with BOPET
and its heat resistance was also studied. The results showed that with the change of urethane/urea
the overall changes of surface energy and adhesion work were small. The surface energy was mainly nonpolar Lifshitz-Vander Waals γ
LW
and the adhesion work was mainly nonpolar work
W
LW
Bi
. The acid-base contribution of the two was small
but PU-P1 and PU-N1 showed relatively strong acidic effect. There were some differences between the actually tested adhesion fastness and the theoretical surface energy and adhesion work. When the urethane/urea was 10/90
the adhesion work of PU-P1 and PU-N1 were relatively low
and the actual adhesion fastness was elatively good due to the acid-base effect in the surface energy and better wettability and spreadability; The adhesion work of PU-B1 was the largest
and its actual adhesion fastness was the smallest due to its larger apparent viscosity. When the urethane/urea was 40/60
the adhesion fastness were relatively best
which were consistent with the theoretical adhesion work and surface energy. After the coating samples were boiled for 30 min
the adhesion fastness decreased to a certain extent
while PU-N and PU-E could maintain good adhesion fastness
while PU-B decreased significantly. With the increase of urethane/urea
the initial thermal decomposition temperature
T
5%
and
T
max
of polyurethane generally showed a downward trend
and the
T
5%
of PU-B was the highest
while the
T
5%
of PU-P was the lowest.
氨基甲酸酯基/脲键聚酯型聚氨酯接触角表面性能附着牢度
Urethane/UreaPolyester polyurethaneContact angleSurface propertiesAdhesion fastness
Tahara, M.; Cuong, N. K.; Nakashima, Y. Improvement in adhesion of polyethylene by glow-discharge plasma. Surf. Coat. Technol., 2003, 174-175, 826–830.
李明勇, 王强, 辛嘉庆, 刘小东. BOPET薄膜电晕处理及效果研究. 塑料工业, 2020, 48(7), 56–58.
Han, C. C.; Zhang, X. H.; Chen, D.; Ma, Y. H.; Zhao, C. W.; Yang, W. T. Enhanced dielectric properties of sandwich-structured biaxially oriented polypropylene by grafting hyper-branched aromatic polyamide as surface layers. J. Appl. Polym. Sci., 2020, 137(34), 48990.
史永涛, 潘肇琦, 杲云. 油墨用聚氨酯树脂的研究. 功能高分子学报, 2003, 16(3), 377–382.
Abdelaziz, M. A.; Ibrahim, M. A.; Abdel-Messih, M. F.; Mekewi, M. A. Vivid application of polyurethane as dispersants for solvent based inkjet ink. Prog. Org. Coat., 2020, 148, 105875.
石红翠, 郭晓勇, 毛祖秋, 张博, 贾金兰, 吴建兵, 马国章. 松香甘油酯改性聚氨酯树脂的合成及其性能研究. 高分子通报, 2012, (9), 71–76.
丁李钰, 黄毅萍, 鲍俊杰, 刘皓. 长烷基链对水性聚氨酯在非极性基材上附着力的影响. 精细化工, 2023, 40(2), 424–429.
赵庆仁, 邓孙艳, 黄毅萍, 鲍俊杰. 非结晶性水性聚氨酯油墨连接料的合成. 精细化工, 2021, 38(12), 2586–2592.
Lei, L.; Zhang, Y. H.; Ou, C. B.; Xia, Z. B.; Zhong, L. Synthesis and characterization of waterborne polyurethanes with alkoxy silane groups in the side chains for potential application in waterborne ink. Prog. Org. Coat., 2016, 92, 85–94.
Zhang, M. G.; Lian, X. Y.; Cui, J. L.; Li, X. Y.; Wang, H. Q. Synthesis of waterborne polyurethane ink binder with high T-peel strength and its application in biaxially oriented polypropylene film printing. J. Appl. Polym. Sci., 2021, 138(17), 50273.
Chattopadhyay, D. K.; Sreedhar, B.; Raju, K. V. S. N. Effect of chain extender on phase mixing and coating properties of polyurethane ureas. Ind. Eng. Chem. Res., 2005, 44(6), 1772–1779.
李品一, 王建祺, 沈优珍. 接触角法研究医用聚醚聚氨酯材料表面自由能与界面自由能. 高分子学报, 1991(3), 356–360.
Lupu, M.; Macocinschi, D.; Ioanid, G.; Butnaru, M.; Ioan, S. Surface tension of poly(ester urethane)s and poly(ether urethane)s. Polym. Int., 2007, 56(3), 389–398.
Takahara, A.; Tashita, J. I.; Kajiyama, T.; Takayanagi, M.; MacKnight, W. J. Microphase separated structure, surface composition and blood compatibility of segmented poly(urethaneureas) with various soft segment components. Polymer, 1985, 26(7), 987–996.
张文雨, 李晋庆, 罗运军. 具有键合功能热塑性聚氨酯的表面性能. 高分子材料科学与工程, 2012, 28(2), 28–31.
赵玉梅, 张博, 刘美琴, 石红翠. 氨基甲酸酯基/脲键对混合TDI聚酯-聚氨酯树脂羰基氢键作用的影响. 高分子通报, 2023, 36(3), 355–365.
Santos, J. M. R. C. A.; Guthrie, J. T. Study of a core-shell type impact modifier by inverse gas chromatography. J. Chromatogr. A, 2005, 1070(1-2), 147–154.
Martin, E. C.; Yee, R. Y. Effects of surface interactions and mechanical properties of pbxs (plastic bonded explosives) on explosive sensitivity. Naval Weapons Center China Lake, CA, AD-A146368, 1984.
宋华杰, 董海山, 郝莹. TATB、HMX与氟聚合物的表面能研究. 含能材料, 2000, 8(3), 104–107.
Rickerby, D. S. A review of the methods for the measurement of coating-substrate adhesion. Surf. Coat. Technol., 1988, 36(1-2), 541–557.
潘慧铭, 黄素娟. 表面、界面的作用与粘接机理(一). 粘接, 2003, 24(2), 40–45.
Blackwell, J.; Nagarajan, M. R.; Hoitink, T. B. Structure of polyurethane elastomers: effect of chain extender length on the structure of MDI/diol hard segments. Polymer, 1982, 23(7), 950–956.
Blackwell, J.; Nagarajan, M. R.; Hoitink, T. B. Structure of polyurethane elastomers. X-ray diffraction and conformational analysis of MDI-propandiol and MDI-ethylene glycol hard segments. Polymer, 1981, 22(11), 1534–1539.
易玉华, 李春涛, 卢无恙. 聚四氢呋喃醚二醇/聚氧化丙烯二醇共混聚醚聚氨酯弹性体的氢键作用. 高分子材料科学与工程, 2018, 34(6), 92–96.
Marshall, S. J.; Bayne, S. C.; Baier, R.; Tomsia, A. P.; Marshall, G. W. A review of adhesion science. Dent. Mater., 2010, 26(2), e11–e16.
孔霞, 瞿金清, 朱延安, 曹树潮, 陈焕钦. 聚氨酯丙烯酸水性木器涂料附着力影响因素的研究. 涂料工业, 2010, 40(2), 37–40.
Roberts, A. D. Acid-base interactions in the adhesion of rubber surfaces. Langmuir, 1992, 8(5), 1479–1486.
McCafferty, E. Acid-base effects in polymer adhesion at metal surfaces. J. Adhes. Sci. Technol., 2002, 16(3), 239–255.
刘凉冰. 聚氨酯弹性体的耐水性能. 弹性体, 1995, 5(3), 39–46.
吴元, 吴飞, 赵福光, 李再峰. 邻接交联型聚氨酯脲弹性体的结构、性能与温度的相关性研究. 弹性体, 2013, 23(3), 16–19.
Xu, D. H.; Liu, F.; Pan, G.; Zhao, Z. G.; Yang, X.; Shi, H. C.; Luan, S. F. Softening and hardening of thermal plastic polyurethane blends by water absorbed. Polymer, 2021, 218, 123498.
Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer, 2006, 47(4), 1348–1356.
Wang, W.; Jin, Y.; Su, Z. H. Spectroscopic study on water diffusion in poly(ester urethane) block copolymer matrix. J. Phys. Chem. B, 2009, 113(48), 15742–15746.
谢静, 杜中杰, 涂志刚, 励杭泉, 张晨. 侧基体积对聚氨酯耐水解性的影响. 高分子材料科学与工程, 2012, 28(7), 35–38.
Born, L.; Hespe, H. On the physical crosslinking of amine-extended polyurethane urea elastomers: A crystalloimagedata analysis of bis-urea from diphenyl methane-4-isocyanate and 1,4-butane diamine. Colloid Polym. Sci., 1985, 263(4), 335–341.
Paik Sung, C. S.; Smith, T. W.; Sung, N. H. Properties of segmented polyether poly(urethaneureas) based of 2,4-toluene diisocyanate. 2. infrared and mechanical studies. Macromolecules, 1980, 13(1), 117–121.
Kimura, I.; Ishihara, H.; Ono, H.; Yoshihara, N.; Nomura, S.; Kawai, H. Morphology and deformation mechanism of segmented poly(urethaneureas) in relation to spherulitic crystalline textures. Macromolecules, 1974, 7(3), 355–363.
雷亮, 夏正斌, 杨涛, 钟理. 水性聚氨酯油墨连接料的关键性能分析. 中国胶粘剂, 2015, 24(7), 54–58.
江治, 袁开军, 李疏芬, 周允基. 聚氨酯的FTIR光谱与热分析研究. 光谱学与光谱分析, 2006, 26(4), 624–628.
0
浏览量
62
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构