浏览全部资源
扫码关注微信
广东工业大学轻工化工学院,广州 510006
*丁明明,E-mail: mmding@gdut.edu.cn
纸质出版日期:2024-06,
收稿日期:2023-10-07,
录用日期:2023-11-01
扫 描 看 全 文
林铭涛, 彭尔康, 丁明明. 环状梳形聚合物在稀溶液中的链构象. 高分子通报, 2024, 37(6), 802–807
Lin, M. T.; Peng, E. K.; Ding; M. M. Chain conformation of ring comb-like polymers in dilute solution. Polym. Bull. (in Chinese), 2024, 37(6), 802–807
林铭涛, 彭尔康, 丁明明. 环状梳形聚合物在稀溶液中的链构象. 高分子通报, 2024, 37(6), 802–807 DOI: 10.14028/j.cnki.1003-3726.2024.23.333.
Lin, M. T.; Peng, E. K.; Ding; M. M. Chain conformation of ring comb-like polymers in dilute solution. Polym. Bull. (in Chinese), 2024, 37(6), 802–807 DOI: 10.14028/j.cnki.1003-3726.2024.23.333.
环状梳形聚合物布朗动力学链构象
Ring comb-like polymerBrownian dynamicsChain conformation
Xie, G. J.; Martinez, M. R.; Olszewski, M.; Sheiko, S. S.; Matyjaszewski, K.Molecular bottlebrushes as novel materials. Biomacromolecules, 2018, 20(1), 27–54.
MacFarlane, R. J.; Kim, B.; Lee, B.; Weitekamp, R. A.; Bates, C. M.; Lee, S. F.; Chang, A. B.; Delaney, K. T.; Fredrickson, G. H.; Atwater, H. A.; Grubbs, R. H.Improving brush polymer infrared one-dimensional photonic crystals via linear polymer additives. J. Am. Chem. Soc., 2014, 136(50), 17374–17377.
Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Lim, Y. H.; Finn, M. G.; Koberstein, J. T.; Turro, N. J.; Tirrell, D. A.; Grubbs, R. H.Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to. J. Am. Chem. Soc., 2011, 133(3), 559–566.
Abbasi, M.; Faust, L.; Wilhelm, M.Comb and bottlebrush polymers with superior rheological and mechanical properties. Adv. Mater., 2019, 31(26), e1806484.
Watanabe, M.; Mizukami, K.Well-ordered wrinkling patterns on chemically oxidized poly(dimethylsiloxane) surfaces. Macromolecules, 2012, 45(17), 7128–7134.
Yethiraj, A.A Monte Carlo simulation study of branched polymers. J. Chem. Phys., 2006, 125(20), 204901.
Hsu, H. P.; Paul, W.; Rathgeber, S.; Binder, K.Characteristic length scales and radial monomer density profiles of molecular bottle-brushes: simulation and experiment. Macromolecules, 2010, 43(3), 1592–1601.
Theodorakis, P. E.; Hsu, H. P.; Paul, W.; Binder, K.Computer simulation of bottle-brush polymers with flexible backbone: good solvent versus theta solvent conditions. J. Chem. Phys., 2011, 135(16), 164903.
Dutta, S.; Wade, M. A.; Walsh, D. J.; Guironnet, D.; Rogers, S. A.; Sing, C. E.Dilute solution structure of bottlebrush polymers. Soft Matter, 2019, 15(14), 2928–2941.
Pan, T. Y.; Dutta, S.; Sing, C. E.Interaction potential for coarse-grained models of bottlebrush polymers. J. Chem. Phys., 2022, 156(1), 014903.
Patel, S. F.; Young, C. D.; Sing, C. E.; Schroeder, C. M.Nonmonotonic dependence of comb polymer relaxation on branch density in semidilute solutions of linear polymers. Phys. Rev. Fluids, 2020, 5(12), 121301.
Mai, D. J.; Saadat, A.; Khomami, B.; Schroeder, C. M.Stretching dynamics of single comb polymers in extensional flow. Macromolecules, 2018, 51(4), 1507–1517.
Bejagam, K. K.; Singh, S. K.; Ahn, R.; Deshmukh, S. A.Unraveling the conformations of backbone and side chains in thermosensitive bottlebrush polymers. Macromolecules, 2019, 52(23), 9398–9408.
Morozova, S.; Lodge, T. P.Conformation of methylcellulose as a function of poly(ethylene glycol) graft density. ACS Macro Lett., 2017, 6(11), 1274–1279.
Morozova, S.; Schmidt, P. W.; Bates, F. S.; Lodge, T. P.Effect of poly(ethylene glycol) grafting density on methylcellulose fibril formation. Macromolecules, 2018, 51(23), 9413–9421.
Pan, X. J.; Ishaq, M. W.; Umair, A.; Ali, M. W.; Li, L. W.Evolution of single chain conformation for model comb-like chains with grafting density ranging from 0 to ~100% in dilute solution. ACS Macro Lett., 2019, 8(12), 1535–1540.
Pan, X. J.; Ding, M. M.; Li, L. W.Experimental validation on average conformation of a comblike polystyrene library in dilute solutions: universal scaling laws and abnormal SEC elution behavior. Macromolecules, 2021, 54(23), 11019–11031.
Tang, Z. X.; Pan, X. J.; Zhou, H. W.; Li, L. W.; Ding, M. M.Conformation of a comb-like chain free in solution and confined in a nanochannel: from linear to bottlebrush structure. Macromolecules, 2022, 55(19), 8668–8675.
Mai, X. H.; Hao, P.; Liu, D. F.; Ding, M. M.Conformation of a comb-like chain in solution: effect of backbone rigidity. ACS Omega, 2023, 8(12), 11177–11183.
Nasongkla, N.; Chen, B.; Macaraeg, N.; Fox, M. E.; Fréchet, J. M. J.; Szoka, F. C.Dependence of pharmacokinetics and biodistribution on polymer architecture: effect of cyclic versus linear polymers. J. Am. Chem. Soc., 2009, 131(11), 3842–3843.
Wei, H.; Chu, D. S. H.; Zhao, J. L.; Pahang, J. A.; Pun, S. H.Synthesis and evaluation of cyclic cationic polymers for nucleic acid delivery. ACS Macro Lett., 2013, 2(12), 1047–1050.
Morgese, G.; Trachsel, L.; Romio, M.; Divandari, M.; Ramakrishna, S. N.; Benetti, E. M.Topological polymer chemistry enters surface science: linear versus cyclic polymer brushes. Angew. Chem. Int. Ed., 2016, 55(50), 15583–15588.
Lyubimov, I.; Wessels, M. G.; Jayaraman, A.Molecular dynamics simulation and PRISM theory study of assembly in solutions of amphiphilic bottlebrush block copolymers. Macromolecules, 2018, 51(19), 7586–7599.
Wessels, M. G.; Jayaraman, A.Molecular dynamics simulation study of linear, bottlebrush, and star-like amphiphilic block polymer assembly in solution. Soft Matter, 2019, 15(19), 3987–3998.
Weeks, J. D.; Chandler, D.; Andersen, H. C.Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys., 1971, 54(12), 5237–5247.
Kremer, K.; Grest, G. S.Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys., 1990, 92(8), 5057–5086.
Ermak, D. L.; McCammon, J. A.Brownian dynamics with hydrodynamic interactions. J. Chem. Phys., 1978, 69(4), 1352–1360.
Kumar, S.; Larson, R. G.Brownian dynamics simulations of flexible polymers with spring-spring repulsions. J. Chem. Phys., 2001, 114(15), 6937–6941.
0
浏览量
46
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构