浏览全部资源
扫码关注微信
中国电力科学研究院,武汉 430074
*许梦伊,E-mail: xumengyi@epri.sgcc.com.cn
纸质出版日期:2024-03-20,
收稿日期:2023-11-13,
录用日期:2023-12-01
扫 描 看 全 文
林浩, 严飞, 国江, 黄想, 姜胜宝, 许梦伊等规聚丙烯拉伸取向片晶结构的温度关联性. 高分子通报, 2024, 37(3), 358–367
Lin, H.; Yan, F.; Guo, J.; Huang, X.; Jiang, S. B.; Xu, M.Y. Temperature-dependent lamellae structure in stretch-oriented isotactic polypropylene. Polym. Bull. (in Chinese), 2024, 37(3), 358–367
林浩, 严飞, 国江, 黄想, 姜胜宝, 许梦伊等规聚丙烯拉伸取向片晶结构的温度关联性. 高分子通报, 2024, 37(3), 358–367 DOI: 10.14028/j.cnki.1003-3726.2024.23.384.
Lin, H.; Yan, F.; Guo, J.; Huang, X.; Jiang, S. B.; Xu, M.Y. Temperature-dependent lamellae structure in stretch-oriented isotactic polypropylene. Polym. Bull. (in Chinese), 2024, 37(3), 358–367 DOI: 10.14028/j.cnki.1003-3726.2024.23.384.
为了探究加工温度对热拉伸聚丙烯取向晶体结构的影响规律,将等规聚丙烯(
i
PP)铸片在不同温度下拉伸到相同应变,并通过二维广角/小角X射线散射、差示扫描量热仪、动态力学分析等手段,对拉伸取向
i
PP的微观结构特性进行了系统研究。结果表明:经过热拉伸后,由球晶形貌演变成纤维晶形貌,纤维晶体由高度取向片晶和无定形层交替堆叠排列构成;升高温度引起结晶性能增强,结晶度和片晶平均厚度随温度连续递增;提高温度造成结晶相与无定形相之间的物性差异变大,两相链段运动松弛温度的变化趋势相反;热拉伸过程中新形成了不同厚度(熔点)的片晶,高熔点片晶是通过熔融-再结晶机理形成,而低熔点片晶由应变诱导结晶方式获得。本研究初步阐明了拉伸温度对聚丙烯取向片晶结构的影响规律和作用机制,对于开展结晶聚合物拉伸加工过程中多层次结构调控与性能优化具有参考价值。
In this work
the working roles of stretching temperature (
T
s
) on impacting the microstructure characteristics of oriented isotactic polypropylene (
i
PP) were surveyed in depth by a combination of two-dimentional wide-angle/small-angle X-ray scattering
differential scanning calorimetry
dynamic mechanical analysis
etc
. The results show that the initial spherulitic morphology transformed into the fibrillar crystal morphology after experiencing hot-stretching process
and that the crystalline fibrils consist of the altermative stacks of highly orentied lamellae and amorphous layers. A
T
s
-dominant crystallization enhancement was found as that: crystallinity and mean lamellar thickness increased monotonously as elevating
T
s
. Meanwhile
as the
T
s
increases
the physical properties of the crystalline phase begin to diverge significantly from those of the amorphous phase
resulting in opposite trends for chain relaxation in the two phases. Two fractions of lamellae with different thicknesses (melt point) are newly formed during the hot stretching process. The lamellae with higher melt point are arisen from the melt-recrystallization mechansim
while the occurrence of low-melt point lamellae obeys the strain-induced crystallization mechanism. This work provides a new understanding into the rule of structural manipulation of semicrystalline polymers during stretch processing.
等规聚丙烯拉伸温度片晶结晶度熔点
Isotactic polypropyleneStretching temperatureLamellaeCrystallinityMelt point
T. Wu,; K. Wang,; M. Xiang,; Q. Fu,Progresses in manufacturing techniques of lithium-ion battery separators in China. Chin. J. Chem., 2019, 37(12), 1207–1215.
马宇威, 程璐, 刘宏博, 徐哲, 张卓, 邢照亮, 戴熙瀛, 刘文凤. 双向拉伸聚丙烯薄膜聚集态结构与击穿特性的关联. 绝缘材料, 2023, 56(1), 1–7.
Y. F. Lin,; W. Chen,; L. P. Meng,; D. L. Wang,; L. B. Li,Recent advances in post-stretching processing of polymer films with in situ synchrotron radiation X-ray scattering. Soft Matter, 2020, 16(15), 3599–3612.
T. Wu,; K. Wang,; X. F. Chen,; X. M. Yang,; M. Xiang,; Q. Fu,Practicing the concept of “structuring” processing in the manufacture of polymer films. Sci. China Chem., 2023, 66(4), 993–1010.
L. B. Li,In situ synchrotron radiation techniques: watching deformation-induced structural evolutions of polymers. Chinese J. Polym. Sci., 2018, 36(10), 1093–1102.
S. S. Xu,; J. Zhou,; P. J. Pan,Strain-induced multiscale structural evolutions of crystallized polymers: from fundamental studies to recent progresses. Prog. Polym. Sci., 2023, 140, 101676.
J. Y. Zhao,; Y. Y. Sun,; Y. F. Men,Elasticity reinforcement in propylene-ethylene random copolymer stretched at elevated temperature in large deformation regime. Macromolecules, 2016, 49(2), 609–615.
S. Y. Feng,; J. H. Zhu,; W. C. Yu,; H. Guo,; W. Chen,; A. Lu,; L. B. Li,Strain-rate-dependent phase transition mechanism in polybutene-1 during uniaxial stretching: from quasi-static to dynamic loading conditions. Macromolecules, 2022, 55(6), 2333–2344.
C. Millot,; R. Séguéla,; O. Lame,; L. A. Fillot,; C. Rochas,; P. Sotta,Tensile deformation of bulk polyamide 6 in the preyield strain range. Micro-macro strain relationships via in situ SAXS and WAXS. Macromolecules, 2017, 50(4), 1541–1553.
R. Hiss,; S. Hobeika,; C. Lynn,; G. Strobl,Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules, 1999, 32(13), 4390–4403.
Y. F. Men,Critical strains determine the tensile deformation mechanism in semicrystalline polymers. Macromolecules, 2020, 53(21), 9155–9157.
B. B. Chang,; K. Schneider,; F. Xiang,; R. Vogel,; S. Roth,; G. Heinrich,Critical strains for lamellae deformation and cavitation during uniaxial stretching of annealed isotactic polypropylene. Macromolecules, 2018, 51(16), 6276–6290.
R. Y. Bao,; Z. T. Ding,; Z. Y. Liu,; W. Yang,; B. H. Xie,; M. B. Yang,Deformation-induced structure evolution of oriented β-polypropylene during uniaxial stretching. Polymer, 2013, 54(3), 1259–1268.
Y. X. Wang,; S. P. Chen,; T. Wu,; Q. Fu,Yielding behavior of isotactic polypropylene at elevated temperature understood at the spherulite level. Polymer, 2023, 281, 126150.
S. Hobeika,; Y. Men,; G. Strobl,Temperature and strain rate independence of critical strains in polyethylene and poly(ethylene-co-vinyl acetate). Macromolecules, 2000, 33(5), 1827–1833.
F. Auriemma,; C. De Rosa,; R. Di Girolamo,; A. Malafronte,; M. Scoti,; G. R. Mitchell,; S. Esposito,Deformation of stereoirregular isotactic polypropylene across length scales: influence of temperature. Macromolecules, 2017, 50(7), 2856–2870.
M. Ritamäki,; I. Rytöluoto,; K. Lahti,Performance metrics for a modern BOPP capacitor film. IEEE Trans. Dielectr. Electr. Insul., 2019, 26(4), 1229–1237.
查俊伟, 刘雪洁, 董晓迪, 万宝全. 介电聚酰亚胺薄膜研究进展. 高分子通报, 2023, 36(8), 998–1014.
T. Lüpke,; S. Dunger,; J. Sänze,; H. J. Radusch,Sequential biaxial drawing of polypropylene films. Polymer, 2004, 45(20), 6861–6872.
S. Z. D. Cheng,; J. J. Janimak,; A. Q. Zhang,; E. T. Hsieh,Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and thermodynamic property changes. Polymer, 1991, 32(4), 648–655.
F. Luo,; C. Z. Geng,; K. Wang,; H. Deng,; F. Chen,; Q. Fu,; B. Na,New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules, 2009, 42(23), 9325–9331.
C. Zhang,; X. Y. Dai,; Z. L. Xing,; S. W. Guo,; F. Li,; X. Chen,; J. J. Zhou,; L. Li,Investigation on the structure and performance of polypropylene sheets and bi-axially oriented polypropylene films for capacitors. Chinese J. Polym. Sci., 2022, 40(12), 1688–1696.
郭俊强, 李倩, 罗志, 李化毅, 黎静. 聚丙烯β成核剂的研究进展. 高分子通报, 2022, (7), 11–21.
F. Spieckermann,; G. Polt,; H. Wilhelm,; M. B. Kerber,; E. Schafler,; M. Reinecker,; V. Soprunyuk,; S. Bernstorff,; M. Zehetbauer,Dislocation movement induced by molecular relaxations in isotactic polypropylene. Macromolecules, 2017, 50(17), 6362–6368.
K. Hong,; G. Strobl,Network stretching during tensile drawing of polyethylene: a study using X-ray scattering and microscopy. Macromolecules, 2006, 39(1), 268–273.
S. Yang,; H. N. Yu,; J. Li,; S. Y. Guo,; H. Wu,; J. B. Shen,; Y. Xiong,; R. Chen,Structural evolution and toughening mechanism of β-transcrystallinity of polypropylene induced by the two-dimensional layered interface during uniaxial stretching. ACS Omega, 2017, 2(3), 814–827.
Y. Lu,; Y. T. Wang,; R. Chen,; J. Y. Zhao,; Z. Y. Jiang,; Y. F. Men,Cavitation in isotactic polypropylene at large strains during tensile deformation at elevated temperatures. Macromolecules, 2015, 48(16), 5799–5806.
T. Kida,; R. Tanaka,; T. Shiono,; M. Yamaguchi,Direct observation of the effect of a high-molecular-weight component on the deformation behavior of polyethylene solids using the rheo-raman spectroscopic technique. Macromolecules, 2023, 56(8), 3073–3082.
A. Peterlin, Plastic deformation of crystalline polymers. Polym. Eng. Sci., 1977, 17, 183–193.
N. S. Murthy,; R. G. Bray,; S. T. Correale,; R. A. F. Moore,Drawing and annealing of nylon-6 fibres: studies of crystal growth, orientation of amorphous and crystalline domains and their influence on properties. Polymer, 1995, 36(20), 3863–3873.
B. Deng,; L. Chen,; X. K. Li,; Z. B. Wang,Influence of prereserved shish crystals on the structural evolution of ultrahigh-molecular weight polyethylene films during the hot stretching process. Macromolecules, 2022, 55(11), 4600–4613.
D. Grubb,; N. S. Murthy,; O. Francescangeli,Elliptical small-angle X-ray scattering patterns from aligned lamellar arrays. J. Polym. Sci. Part B Polym. Phys., 2016, 54(2), 308–318.
M. Hoyos,; P. Tiemblo,; J. M. Gómez-Elvira,The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene: the α relaxation. Polymer, 2007, 48(1), 183–194.
Z. Bartczak,; A. Galeski,Plasticity of semicrystalline polymers. Macromol. Symp., 2010, 294(1), 67–90.
Y. T. Wang,; Z. Y. Jiang,; Z. H. Wu,; Y. F. Men,Tensile deformation of polybutene-1 with stable form I at elevated temperature. Macromolecules, 2013, 46(2), 518–522.
A. Rozanski,; A. Galeski,Crystalline lamellae fragmentation during drawing of polypropylene. Macro-molecules, 2015, 48(15), 5310–5322.
Z. Y. Jiang,; Y. J. Tang,; J. Rieger,; H. F. Enderle,; D. Lilge,; S. V. Roth,; R. Gehrke,; W. Heckmann,; Y. F. Men,Two lamellar to fibrillar transitions in the tensile deformation of high-density polyethylene. Macromolecules, 2010, 43(10), 4727–4732.
R. Séguéla,Plasticity of semi-crystalline polymers: crystal slip versus melting-recrystallization. e-Polymers, 2007, 7(1), 032.
X. W. Chen,; L. P. Meng,; W. W. Zhang,; K. Ye,; C. Xie,; D. L. Wang,; W. Chen,; M. J. Nan,; S. H. Wang,; L. B. Li,Frustrating strain-induced crystallization of natural rubber with biaxial stretch. ACS Appl. Mater. Interfaces, 2019, 11(50), 47535–47544.
0
浏览量
68
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构