浏览全部资源
扫码关注微信
1..烟台希尔德材料科技有限公司,烟台 264006
2..山东凯瑞尔光电科技有限公司,烟台 264006
*毕研刚,E-mail: longgang-54@126.com;崔淑英,E-mail: sukyoung@126.com;豆帆,E-mail: dfshield@126.com
*毕研刚,E-mail: longgang-54@126.com;崔淑英,E-mail: sukyoung@126.com;豆帆,E-mail: dfshield@126.com
*毕研刚,E-mail: longgang-54@126.com;崔淑英,E-mail: sukyoung@126.com;豆帆,E-mail: dfshield@126.com
纸质出版日期:2024-08,
收稿日期:2023-12-19,
录用日期:2024-02-19
扫 描 看 全 文
毕研刚, 邹丽丽, 崔淑英, 徐晶, 李晓珂, 傅天林, 王振羽, 赵增武, 王英杰, 刘海燕, 洪海哲, 豆帆. 聚倍半硅氧烷类树脂在各波长光刻技术中的研究进展. 高分子通报, 2024, 37(8), 1037–1048
Bi, Y. G.; Zou, L. L.; Cui, S. Y.; Xu, J.; Li, X. K.; Fu, T. L.; Wang, Z. Y.; Zhao, Z. W.; Wang, Y. J.; Liu, H. Y.; Hong, H. Z.; Dou, F. Research progress on polyhedral oligomeric silsesquioxanes in photolithography technology across various wavelengths. Polym. Bull. (in Chinese), 2024, 37(8), 1037–1048
毕研刚, 邹丽丽, 崔淑英, 徐晶, 李晓珂, 傅天林, 王振羽, 赵增武, 王英杰, 刘海燕, 洪海哲, 豆帆. 聚倍半硅氧烷类树脂在各波长光刻技术中的研究进展. 高分子通报, 2024, 37(8), 1037–1048 DOI: 10.14028/j.cnki.1003-3726.2024.23.416.
Bi, Y. G.; Zou, L. L.; Cui, S. Y.; Xu, J.; Li, X. K.; Fu, T. L.; Wang, Z. Y.; Zhao, Z. W.; Wang, Y. J.; Liu, H. Y.; Hong, H. Z.; Dou, F. Research progress on polyhedral oligomeric silsesquioxanes in photolithography technology across various wavelengths. Polym. Bull. (in Chinese), 2024, 37(8), 1037–1048 DOI: 10.14028/j.cnki.1003-3726.2024.23.416.
聚倍半硅氧烷透明性低介电性耐蚀刻性光刻技术
Polyhedral oligomeric silsesquioxanesTransparencyLow dielectricEtching resistanceLithography technology
Wang, X. L.; Tao, P. P.; Wang, Q. Q.; Zhao, R. B.; Liu, T. Q.; Hu, Y.; Hu, Z. Y.; Wang, Y. M.; Wang, J. L.; Tang, Y. P.; Xu, H.; He, X. M.Trends in photoresist materials for extreme ultraviolet lithography: a review. Mater. Today, 2023, 67, 299–319.
Colombo P.; Franchin G.Improving glass nanostructure fabrication. Science, 2023, 380, 895–896.
Zhang, W. C.; Camino, G.; Yang, R. J.Polymer/polyhedral oligomeric silsesquioxane (POSS) nano-composites: an overview of fire retardance. Prog. Polym. Sci., 2017, 67, 77–125.
Wachulak, P. W.; Capeluto, M. G.; Menoni, C. S.; Rocca, J. J.; Marconi, M. C.Nanopatterning in a compact setup using table top extreme ultraviolet lasers. Opto Electron. Rev., 2008, 16(4), 444–450.
Lim, G.; Lee, K.; Choi, S.; Yoon, H. J.Organometallic and coordinative photoresist materials for EUV lithography and related photolytic mechanisms. Coord. Chem. Rev., 2023, 493, 215307.
Bauer, J.; Crook, C.; Baldacchini, T.A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science, 2023, 380(6648), 960–966.
Fang, G.; Cao, H. Z.; Cao, L. C.; Duan, X. M.Femtosecond laser direct writing of 3D silica-like microstructure from hybrid epoxy cyclohexyl POSS. Adv. Mater. Technol., 2018, 3(3), 1700271.
Liang, G. Q.; Zhu, X. L.; Xu, Y. A.; Li, J.; Yang, S.Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure. Adv. Mater., 2010, 22(40), 4524–4529.
Jin, F.; Liu, J.; Zhao, Y. Y.; Dong, X. Z.; Zheng, M. L.; Duan, X. M.λ/30 inorganic features achieved by multi-photon 3D lithography. Nat. Commun., 2022, 13(1), 1357.
Lin, H. M.; Hseih, K. H.; Chang, F. C.Characterization of negative-type photoresists containing polyhedral oligomeric silsesquioxane methacrylate. Microelectron. Eng., 2008, 85(7), 1624–1628.
Lin, H. M.; Wu, S. Y.; Huang, P. Y.; Huang, C. F.; Kuo, S. W.; Chang, F. C.Polyhedral oligomeric silsesquioxane containing copolymers for negative-type photoresists. Macromol. Rapid Commun., 2006, 27(18), 1550–1555.
Sugita, H.; Tanaka, K.; Shirato, K.; Yamamoto, R.; Tateshima, K.Styryl silsesquioxane photoresist. J. Appl. Polym. Sci., 2015, 132(7), 41459.
Suwa, M.; Kamogawa, M.; Fujii, M.; Nishiyama, T.; Kozuka, H.Intermolecular interactions between sol-gel-derived random-structure oligomeric silsesquioxanes and a diazonaphthoquinone derivative. Jpn. J. Appl. Phys., 2021, 60(5), 051002.
Suwa, M.; Kamogawa, M.; Fujii, M.; Nishiyama, T.; Kozuka, H.Patterning characteristic control of sol-gel-derived random-structure oligomeric silsesquioxanes having a diazonaphthoquinone derivative. J. Vac. Sci. Technol. B, 2022, 40(2), 022602.
Kim, R. I.; Shin, J. H.; Lee, J. S.; Lee, J. H.; Lee, A. S.; Hwang, S. S.Tunable crystalline phases in UV-curable PEG-grafted ladder-structured silsesquioxane/polyimide composites. Materials, 2020, 13(10), 2295.
Lin, H.; Wan, X.; Jiang, X. S.; Wang, Q. K.; Yin, J.A nanoimprint lithography hybrid photoresist based on the thiol-ene system. Adv. Funct. Mater., 2011, 21(15), 2960–2967.
Ro, H.; Jones, R.; Peng, H.; Hines, D.; Lee, H. J.; Lin, E.; Karim, A.; Yoon, D.; Gidley, D.; Soles, C.The direct patterning of nanoporous interlayer dielectric insulator films by nanoimprint lithography. Adv. Mater., 2007, 19(19), 2919–2924.
Lin, G. H.; Zhang, F.; Zhang, Q.; Wei, J.; Guo, J. B.Fluorinated silsesquioxane-based photoresist as an ideal high-performance material for ultraviolet nanoimprinting. RSC Adv., 2014, 4(83), 44073–44081.
Biafore, J. J.; Smith, M. D.; Mack, C. A.; Thackeray, J. W.; Gronheid, R.; Robertson, S. A.; Graves, T.; Blankenship, D.Statistical simulation of resist at EUV and ArF. SPIE Advanced Lithography. Proc SPIE 7273, Advances in Resist Materials and Processing Technology XXVI, San Jose, California, USA, 2009, 7273, 727343.
Sarantopoulou, E.; Kollia, Z.; Kočevar, K.; Muševič, I.; Kobe, S.; Dražić, G.; Gogolides, E.; Argitis, P.; Cefalas, A. C.The challenges of 157 nm nanolithography: surface morphology of silicon-based copolymers. Mater. Sci. Eng. C, 2003, 23(6-8), 995–999.
Hung, R. J.; Yamachika, M.; Iwasawa, H.; Hayashi, A.; Yamahara, N.; Shimokawa, T.Development of SSQ based 157 nm photoresist. J. Photopol. Sci. Technol., 2002, 15(4), 693–698.
Tegou, E.; Bellas, V.; Gogolides, E.; Argitis, P.; Eon, D.; Cartry, G.; Cardinaud, C.Polyhedral oligomeric silsesquioxane (POSS) based resists: material design challenges and lithographic evaluation at 157 nm. Chem. Mater., 2004, 16(13), 2567–2577.
Argitis, P.; Niakoula, D.; Douvas, A. M.; Gogolides, E.; Raptis, I.; Vidali, V. P.; Couladouros, E. A.Materials for lithography in the nanoscale. Int. J. Nanotechnol., 2009, 6(1/2), 71.
Douvas, A. M.; Van Roey, F.; Goethals, M.; Papadokostaki, K. G.; Yannakopoulou, K.; Niakoula, D.; Gogolides, E.; Argitis, P.Partially fluorinated, polyhedral oligomeric silsesquioxane-functionalized (meth) acrylate resists for 193 nm bilayer lithography. Chem. Mater., 2006, 18(17), 4040–4048.
Kim, J. B.; Ganesan, R.; Choi, J. H.; Yun, H. J.; Kwon, Y. G.; Kim, K. S.; Oh, T. H.Photobleachable silicon-containing molecular resist for deep UV lithography. J. Mater. Chem., 2006, 16(34), 3448–3451.
Woo, S. A.; Choi, S. Y.; Kim, J. B.Non-chemically amplified resists containing polyhedral oligomeric silsesquioxane for a bilayer resist system. Polymer, 2016, 98, 336–343.
Kim, J.; Lee, J. K.; Chae, B.; Ahn, J.; Lee, S.Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist. Nano Converg., 2022, 9(1), 53.
Isoyan, A.; Wüest, A.; Wallace, J.; Jiang, F.; Cerrina, F.4X reduction extreme ultraviolet interferometric lithography. Opt. Express, 2008, 16(12), 9106–9111.
Ekinci, Y.; Solak, H. H.; Padeste, C.; Gobrecht, J.; Stoykovich, M. P.; Nealey, P. F.20 nm Line/space patterns in HSQ fabricated by EUV interference lithography. Microelectron. Eng., 2007, 84(5-8), 700–704.
Desai, V.; Mellish, M.; Bennett, S.; Cady, N. C.Process development for high resolution hydrogen silsesquioxane patterning using a commercial scanner for extreme ultraviolet lithography. J. Vac. Sci. Technol. B, 2017, 35(2), 021603.
Toomey, E.; Colangelo, M.; Berggren, K. K.Investigation of ma-N 2400 series photoresist as an electron-beam resist for superconducting nanoscale devices. J. Vac. Sci. Technol. B, 2019, 37(5), 051207.
Faley, M. I.; Bikulov, T. I.; Bosboom, V.; Golubov, A. A.; Dunin-Borkowski, R. E.Bulk nanomachining of cantilevers with Nb nanoSQUIDs based on nanobridge Josephson junctions. Supercond. Sci. Technol., 2021, 34(3), 035014.
Namatsu, H.; Takahashi, Y.; Yamazaki, K.; Yamaguchi, T.; Nagase, M.; Kurihara, K.Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations. J. Vac. Sci. Technol. B, 1998, 16(1), 69–76.
Olynick, D. L.; Cord, B.; Schipotinin, A.; Ogletree, D. F.; Schuck, P. J.Electron-beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in situ electron-beam-induced desorption. J. Vac. Sci. Technol. B, 2010, 28(3), 581–587.
Rathore A.; Pollentier I.; Cipriani M.; Singh H.; De Simone D.; Ingólfsson O.; De Gendt S.Extreme ultraviolet-printability and mechanistic studies of engineered hydrogen silsesquioxane photoresist systems. ACS Appl. Polym. Mater., 2021, 43, 1964–1972.
Caster, A. G.; Kowarik, S.; Schwartzberg, A. M.; Nicolet, O.; Lim, S. H.; Leone, S. R.Observing hydrogen silsesquioxane cross-linking with broadband CARS. J. Raman Spectrosc., 2009, 40(7), 770–774.
Maghsoodi, S.; Wang, S.; Becker, G. S.; Albaugh, J. D.; Yeakle, C. R.; Choi, D. K.; Warner, R. R.; Cerny, G. A.; Hamon, J. E.; Ha, D.; Moyer, E. S.57.3: Transparent silicon-based low-k dielectric materials for TFT-LTPS displays. SID Symp. Dig. Tech. Pap., 2003, 34(1), 1512–1515.
Zhou, W. J.; Zheng, Y. X.; Zhang, C.; Ma, X. F.; Li, D. H.; Ma, L.; Hu, F.; Yang, S. D.; Yang, L.; Gao, M. Y.; Lu, M.; Zhang, R. J.; Wang, S. Y.; Chen, L. Y.Optical properties of high photoluminescence silicon nanocrystals embedded in SiO2 matrices obtained by annealing hydrogen silsesquioxane. Opt. Mater., 2018, 84, 874–878.
Zhang, C.; Wang, D. C.; Zhou, Z. Q.; Hu, F.; Lu, M.Light emissions from a silicon nanocrystal thin film prepared by phase separation of hydrogen silsesquioxane. Phys. E, 2017, 89, 57–60.
Chang, T. C.; Mor, Y. S.; Liu, P. T.; Tsai, T. M.; Chen, C. W.; Mei, Y. J.; Sze, S. M.Effectiveness of NH3 plasma treatment in preventing wet stripper damage to low-k hydrogen silsesquioxane (HSQ). Jpn. J. Appl. Phys., 2001, 40(12A), L1311.
Chang, T. C.; Mor, Y. S.; Liu, P. T.; Tsai, T. M.; Chen, C. W.; Mei, Y. J.; Sze, S. M.Enhancing the resistance of low-k hydrogen silsesquioxane (HSQ) to wet stripper damage. Thin Solid Films, 2001, 398-399, 523–526.
Liu, P. T.; Chang, T. C.; Mor, Y. S.; Sze, S.Enhancing the oxygen plasma resistance of low-k methylsilsesquioxane by H2 plasma treatment. Jpn. J. Appl. Phys., 1999, 38(6A), 3482.
Chang, T. C.; Liu, P. T.; Mor, Y. S.; Sze, S. M.; Yang, Y. L.; Feng, M. S.; Pan, F. M.; Dai, B. T.; Chang, C. Y.The novel improvement of low dielectric constant methylsilsesquioxane by N2O plasma treatment. J. Electrochem. Soc., 1999, 146(10), 3802–3806.
Ditter, D.; Chen, W. L.; Best, A.; Zappe, H.; Koynov, K.; Ober, C. K.; Zentel, R.MEMS analogous micro-patterning of thermotropic nematic liquid crystalline elastomer films using a fluorinated photoresist and a hard mask process. J. Mater. Chem. C, 2017, 5(47), 12635–12644.
Miyazoe, H.; Engelmann, S. U.; Guillorn, M. A.; Pei, D. F.; Li, W. Y.; Lauer, J. L.; Leon Shohet, J.; Fuller, N. C. M.Effects of ultraviolet and vacuum ultraviolet synchrotron radiation on organic underlayers to modulate line-edge roughness of fine-pitch poly-silicon patterns. J. Vac. Sci. Technol. A, 2017, 35(5), 05C306.
Buzi, L.; Miyazoe, H.; Sagianis, M. P.; Marchack, N.; Papalia, J. M.; Engelmann, S. U.Utilizing photosensitive polymers to evaluate UV radiation exposures in different plasma chamber configurations. J. Vac. Sci. Technol. A, 2020, 38(3), 033006.
0
浏览量
91
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构