浏览全部资源
扫码关注微信
1..中国科学院成都有机化学研究所,成都 610041
2..中国科学院大学,北京 100049
*潘毅,E-mail: yipan@cioc.ac.cn
纸质出版日期:2024-08,
收稿日期:2024-01-04,
录用日期:2024-02-11
扫 描 看 全 文
吴宇, 陈舒晗, 潘毅, 郑朝晖, 丁小斌. 基于超分子作用构筑环糊精基形状记忆聚合物的研究进展. 高分子通报, 2024, 37(8), 1001–1010
Wu, Y.; Chen, S. H.; Pan, Y.; Zheng, Z. H.; Ding, X. B. Research progress in constructing cyclodextrin-based shape memory polymers based on the supramolecular interaction. Polym. Bull. (in Chinese), 2024, 37(8), 1001–1010
吴宇, 陈舒晗, 潘毅, 郑朝晖, 丁小斌. 基于超分子作用构筑环糊精基形状记忆聚合物的研究进展. 高分子通报, 2024, 37(8), 1001–1010 DOI: 10.14028/j.cnki.1003-3726.2024.24.003.
Wu, Y.; Chen, S. H.; Pan, Y.; Zheng, Z. H.; Ding, X. B. Research progress in constructing cyclodextrin-based shape memory polymers based on the supramolecular interaction. Polym. Bull. (in Chinese), 2024, 37(8), 1001–1010 DOI: 10.14028/j.cnki.1003-3726.2024.24.003.
超分子作用形状记忆环糊精智能材料
Supramolecular interactionShape memoryCyclodextrinSmart materials
Xie, T.Recent advances in polymer shape memory. Polymer, 2011, 52(22), 4985–5000.
Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S.Shape memory polymers: past, present and future developments. Prog. Polym. Sci., 2015, 49-50, 3–33.
Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S.A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater., 2021, 33(6), e2000713.
Hu, J. L.; Zhu, Y.; Huang, H. H.; Lu, J.Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci., 2012, 37(12), 1720–1763.
Choi, S.; Kim, B.; Park, S.; Seo, J. H.; Ahn, S. K.Slidable cross-linking effect on liquid crystal elastomers: enhancement of toughness, shape-memory, and self-healing properties. ACS Appl. Mater. Interfaces, 2022, 14(28), 32486–32496.
Wang, J.; Li, J.; Li, N.; Guo, X. L.; He, L.; Cao, X.; Zhang, W. Y.; He, R. X.; Qian, Z. Y.; Cao, Y. P.; Chen, Y.A bottom-up approach to dual shape-memory effects. Chem. Mater., 2015, 27(7), 2439–2448.
Cui, Y. D.; Li, D.; Gong, C.; Chang, C. Y.Bioinspired shape memory hydrogel artificial muscles driven by solvents. ACS Nano, 2021, 15(8), 13712–13720.
Yao, X. K.; Huang, P.; Nie, Z. H.Cyclodextrin-based polymer materials: from controlled synthesis to applications. Prog. Polym. Sci., 2019, 93, 1–35.
Seidi, F.; Jin, Y. C.; Xiao, H. N.Polycyclodextrins: synthesis, functionalization, and applications. Carbohydr. Polym., 2020, 242, 116277.
张莹. 环糊精形状记忆聚合物研究进展与展望. 化工矿物与加工, 2021, 50(10), 22–27.
Řezanka, M.Synthesis of substituted cyclodextrins. Environ. Chem. Lett., 2019, 17(1), 49–63.
Tian, B. R.; Liu, Y. M.; Liu, J. Y.Smart stimuli-responsive drug delivery systems based on cyclodextrin: a review. Carbohydr. Polym., 2021, 251, 116871.
Seidi, F.; Shamsabadi, A. A.; Amini, M.; Shabanian, M.; Crespy, D.Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polym. Chem., 2019, 10(27), 3674–3711.
Liu, Z. J.; Ye, L.; Xi, J. N.; Wang, J.; Feng, Z. G.Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog. Polym. Sci., 2021, 118, 101408.
刘波, 刘新华, 于洋, 谢龙. 基于环糊精超分子聚轮烷的制备及其应用研究进展. 高分子通报, 2021, (12), 31–39.
Yamaguchi, H.; Kobayashi, Y.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Harada, A.Photoswitchable gel assembly based on molecular recognition. Nat. Commun., 2012, 3, 603.
Iijima, K.; Aoki, D.; Otsuka, H.; Takata, T.Synthesis of rotaxane cross-linked polymers with supramolecular cross-linkers based on γ-CD and PTHF macromonomers: the effect of the macromonomer structure on the polymer properties. Polymer, 2017, 128, 392–396.
Li, J.; Chen, B.; Wang, X.; Goh, S. H.Preparation and characterization of inclusion complexes formed by biodegradable poly(ε-caprolactone)-poly(tetrahydrofuran)-poly(ε-caprolactone) triblock copolymer and cyclodextrins. Polymer, 2004, 45(6), 1777–1785.
Luo, H. Y.; Liu, Y.; Yu, Z. J.; Zhang, S.; Li, B. J.Novel biodegradable shape memory material based on partial inclusion complex formation between α-cyclodextrin and poly(epsilon-caprolactone). Biomacromolecules, 2008, 9(10), 2573–2577.
Zhang, S.; Yu, Z. J.; Govender, T.; Luo, H. Y.; Li, B. J.A novel supramolecular shape memory material based on partial α-CD-PEG inclusion complex. Polymer, 2008, 49(15), 3205–3210.
Yu, Z. J.; Liu, Y.; Fan, M. M.; Meng, X. W.; Li, B. J.; Zhang, S.Effects of solvent, casting temperature, and guest/host stoichiometries on the properties of shape memory material based on partial α-CD-PEG inclusion complex. J. Polym. Sci. Part B Polym. Phys., 2010, 48(9), 951–957.
Luo, H. Y.; Fan, M. M.; Yu, Z. J.; Meng, X. W.; Li, B. J.; Zhang, S.Preparation and properties of degradable shape memory material based on partial α-cyclodextrin-poly(ε-caprolactone) inclusion complex. Macromol. Chem. Phys., 2009, 210(8), 669–676.
Zhou, Y. F.; Song, Y. N.; Zhen, W. J.; Wang, W. T.The effects of structure of inclusion complex between β-cyclodextrin and poly(L-lactic acid) on its performance. Macromol. Res., 2015, 23(12), 1103–1111.
Feng, W.; Zhou, W. F.; Dai, Z. H.; Yasin, A.; Yang, H. Y.Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. J. Mater. Chem. B, 2016, 4(11), 1924–1931.
Fan, M. M.; Yu, Z. J.; Luo, H. Y.; Zhang, S.; Li, B. J.Supramolecular network based on the self-assembly of γ-cyclodextrin with poly(ethylene glycol) and its shape memory effect. Macromol. Rapid Commun., 2009, 30(11), 897–903.
Liu, G. Q.; Ding, X. B.; Cao, Y. P.; Zheng, Z. H.; Peng, Y. X.Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules, 2004, 37(6), 2228–2232.
Li, Z. H.; Pan, Y.; Zhang, P.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.A novel shape memory polymer based on conetworks. e-Polymers, 2009, 9(1), 025
Li, J.; Liu, T.; Pan, Y.; Xia, S.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.A versatile polymer co-network with broadened glass transition showing adjustable multiple-shape memory effect. Macromol. Chem. Phys., 2012, 213(21), 2246–2252.
Liu, T.; Li, J.; Pan, Y.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.A new approach to shape memory polymer: design and preparation of poly(methyl methacrylate) composites in the presence of star poly(ethylene glycol). Soft Matter, 2011, 7(5), 1641–1643.
Wang, Y. R.; Li, X. J.; Pan, Y.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X.High-strain shape memory polymers with movable cross-links constructed by interlocked slide-ring structure. RSC Adv., 2014, 4(33), 17156–17160.
Li, X. J.; Wang, Y. R.; Wu, R. Q.; Pan, Y.; Zheng, Z. H.; Ding, X. B.Slide-ring shape memory polymers with movable cross-links. React. Funct. Polym., 2017, 119, 26–36.
Wu, R. Q.; Lai, J. J.; Pan, Y.; Zheng, Z. H.; Ding, X. B.High-strain slide-ring shape-memory polycaprolactone-based polyurethane. Soft Matter, 2018, 14(22), 4558–4568.
Yasin, A.; Zhou, W. F.; Yang, H. Y.; Li, H. Z.; Chen, Y.; Zhang, X. Y.Shape memory hydrogel based on a hydrophobically-modified polyacrylamide (HMPAM)/α-CD mixture via a host-guest approach. Macromol. Rapid Commun., 2015, 36(9), 845–851.
Pan, M.; Yuan, Q. J.; Gong, X. L.; Zhang, S.; Li, B. J.A tri-stimuli-responsive shape-memory material using host-guest interactions as molecular switches. Macromol. Rapid Commun., 2016, 37(5), 433–438.
Xiao, Y. Y.; Gong, X. L.; Kang, Y.; Jiang, Z. C.; Zhang, S.; Li, B. J.Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chem. Commun., 2016, 52(70), 10609–10612.
Xie, M. Q.; Wu, C.; Chen, C. Y.; Liu, Y.; Zhao, C. Z.Photo-adaptable shape memory hydrogels based on orthogonal supramolecular interactions. Polym. Chem., 2019, 10(35), 4852–4858.
Dong, Z. Q.; Cao, Y.; Yuan, Q. J.; Wang, Y. F.; Li, J. H.; Li, B. J.; Zhang, S.Redox- and glucose-induced shape-memory polymers. Macromol. Rapid Commun., 2013, 34(10), 867–872.
Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A.Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun., 2011, 2, 511.
Miyamae, K.; Nakahata, M.; Takashima, Y.; Harada, A.Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew. Chem. Int. Ed., 2015, 54(31), 8984–8987.
Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S.pH-induced shape-memory polymers. Macromol. Rapid Commun., 2012, 33(12), 1055–1060.
He, W. Y.; Zhou, D.; Gu, H.; Qu, R. S.; Cui, C. Q.; Zhou, Y. Y.; Wang, Y.; Zhang, X. R.; Wang, Q. H.; Wang, T. M.; Zhang, Y. M.A biocompatible 4D printing shape memory polymer as emerging strategy for fabrication of deployable medical devices. Macromol. Rapid Commun., 2023, 44(2), e2200553.
Roy, A.; Manna, K.; Ray, P. G.; Dhara, S.; Pal, S.β-cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive, adhesive, transparent hydrogel as motion sensor. ACS Appl. Mater. Interfaces, 2022, 14(15), 17065–17080.
Yang, H. L.; Li, S. N.; Zheng, J. X.; Chen, G. Q.; Wang, W. Q.; Miao, Y. Y.; Zhu, N. N.; Cong, Y.; Fu, J.Erasable, rewritable, and reprogrammable dual information encryption based on photoluminescent supramolecular host-guest recognition and hydrogel shape memory. Adv. Mater., 2023, 35(40), e2301300.
0
浏览量
114
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构