浏览全部资源
扫码关注微信
1..北京市科学技术研究院分析测试研究所(北京市理化分析测试中心),有机材料检测技术与质量评价北京市重点实验室,北京 100094
2..广州海关技术中心国家食品接触材料检测重点实验室(广东),广州 510623
*刘艳,E-mail: xgly36@163.com;高峡,E-mail: gaoxia@bcpca.ac.cn
*刘艳,E-mail: xgly36@163.com;高峡,E-mail: gaoxia@bcpca.ac.cn
纸质出版日期:2024-08,
收稿日期:2024-01-11,
录用日期:2024-02-26
扫 描 看 全 文
邹文奇, 王佳敏, 王建凤, 张裕祥, 魏晓晓, 汤庆峰, 钟怀宁, 刘艳, 高峡. 高分子材料全生命周期环境影响评估及关键表征技术. 高分子通报, 2024, 37(8), 1011–1023
Zou, W. Q.; Wang, J. M.; Wang, J. F.; Zhang, Y. X.; Wei, X. X.; Tang, Q. F.; Zhong, H. N.; Liu, Y.; Gao, X. Life cycle environmental impact assessment and key characterization technologies of polymer materials. Polym. Bull. (in Chinese), 2024, 37(8), 1011–1023
邹文奇, 王佳敏, 王建凤, 张裕祥, 魏晓晓, 汤庆峰, 钟怀宁, 刘艳, 高峡. 高分子材料全生命周期环境影响评估及关键表征技术. 高分子通报, 2024, 37(8), 1011–1023 DOI: 10.14028/j.cnki.1003-3726.2024.24.015.
Zou, W. Q.; Wang, J. M.; Wang, J. F.; Zhang, Y. X.; Wei, X. X.; Tang, Q. F.; Zhong, H. N.; Liu, Y.; Gao, X. Life cycle environmental impact assessment and key characterization technologies of polymer materials. Polym. Bull. (in Chinese), 2024, 37(8), 1011–1023 DOI: 10.14028/j.cnki.1003-3726.2024.24.015.
生物基材料再生料塑料生命周期评价老化降解微塑料
Biobased materialsRecycled materialsLife cycle assessment of plasticsAging degradationMicroplastics
龚先政, 聂祚仁, 王志宏, 高峰, 陈文娟, 左铁镛. 中国材料生命周期分析数据库开发及应用. 中国材料进展, 2011, 30(8), 1–7.
龚先政, 聂祚仁, 王志宏, 左铁镛. 材料生命周期清单编制的算法. 北京工业大学学报, 2009, 35(12), 1685–1689.
Zhao, M. L.; Yang, Z.; Zhao, J. N.; Wang, Y.; Ma, X. L.; Guo, J.Life cycle assessment of biodegradable polylactic acid (PLA) plastic packaging products—taking Tianjin, China as a case study. J. Resour. Ecol. 2022, 13(3), 428–441.
Mannheim, V.Life cycle assessment model of plastic products: comparing environmental impacts for different scenarios in the production stage. Polymers, 2021, 13(5), 777.
Tang, Y. B.; Mankaa, R. N.; Traverso, M.An effect factor approach for quantifying the impact of plastic additives on aquatic biota in life cycle assessment. Int. J. Life Cycle Assess., 2022, 27(4), 564–572.
李泉鑫, 李俊杰, 龚先政, 田亚峻. 两条不同技术路线的煤制聚丙烯生命周期评价. 煤炭转化, 2022, 45(4), 1–9.
李小青, 龚先政, 聂祚仁, 王志宏. 中国材料生命周期评价数据模型及数据库开发. 中国材料进展, 2016, 35(3), 171–178.
Blanco, I.; Ingrao, C.; Siracusa, V.Life-cycle assessment in the polymeric sector: a comprehensive review of application experiences on the Italian scale. Polymers, 2020, 12(6), 1212.
Das, S.; Liang, C.; Dunn, J. B.Life cycle assessment of polymers and their recycling. ACS Symposium Series. Washington, DC: American Chemical Society, 2021, 143–170.
高峡, 王朝晖,穆同娜, 张巍, 刘艳琴,田艳玲, 吴燕涛,孙婷. 聚碳酸酯食品接触制品是否使用回收料的检测方法和装置. 中国专利, ZL 201010000627.9, 2013-02-27.
魏晓晓, 高峡, 刘伟丽. 聚碳酸酯饮水桶中掺杂再生料的判定方法研究. 食品安全质量检测学报, 2020, 11(22), 8387–8392.
Song, X. C.; Wrona, M.; Nerin, C.; Lin, Q. B.; Zhong, H. N.Volatile non-intentionally added substances (NIAS) identified in recycled expanded polystyrene containers and their migration into food simulants. Food Packag. Shelf Life, 2019, 20, 100318.
Li, H. K.; Wu, X. F.; Wu, S. L.; Chen, L. C.; Kou, X. X.; Zeng, Y.; Li, D.; Lin, Q. B.; Zhong, H. N.; Hao, T. Y.; Dong, B.; Chen, S.; Zheng, J. G.Machine learning directed discrimination of virgin and recycled poly(ethylene terephthalate) based on non-targeted analysis of volatile organic compounds. J. Hazard. Mater., 2022, 436, 129116.
Wong, D. M.; Bol'shakov, A. A.; Russo, R. E.Laser induced breakdown spectroscopy. Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2017, 533–538.
Gondal, M. A.; Siddiqui, M. N.Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. J. Environ. Sci. Health Part A, 2007, 42(13), 1989–1997.
Gazzotti, S.; De Felice, B.; Ortenzi, M. A.; Parolini, M.Approaches for management and valorization of non-homogeneous, non-recyclable plastic waste. Int. J. Environ. Res. Public Health, 2022, 19(16), 10088.
陈咏萱, 周东山, 胡文兵. 示差扫描量热法进展及其在高分子表征中的应用. 高分子学报, 2021, 52(4), 423–444.
Jawhari, T.; Pastor, J. M.Characterization of multilayer polymer structures by micro-raman and micro-FTIR spectroscopies. J. Mol. Struct., 1992, 266, 205–210.
袁媛, 王梦梵, 曲云菲, 张泽军, 张建明. 拉曼光谱技术在高分子表征研究中的应用. 高分子学报, 2021, 52(9), 1206–1220.
Dazzi, A.; Prater, C. B.AFM-IR: Technology and appli-cations in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev., 2017, 117(7), 5146–5173.
张薇, 侯矍, 李楠, 张文科. 基于原子力显微镜的单分子力谱技术在高分子表征中的应用. 高分子学报, 2021, 52(11), 1523–1546.
王冰花, 陈金龙, 张彬. 原子力显微镜在高分子表征中的应用. 高分子学报, 2021, 52(10), 1406–1420.
Simoneau, C.; Hoekstra, E.; Mieth, A.Guidance for the Identification of Polymers in Multilayer Films Used in Food Contact Materials: User Guide of Selected Practices to Determine the Nature of Layers. European Commission JRC Technical Reports, 2016.
汪志琦, 郭宝华, 徐军. 偏振光学显微成像技术在高分子结晶结构表征中的应用. 高分子学报, 2023, 54(1), 130–150.
Nagakawa, Y.; Yunoki, S.; Saito, M.Liquid scintillation counting of solid-state plastic pellets to distinguish bio-based polyethylene. Polym. Test., 2014, 33, 13–15.
邓坤明, 马艳, 王宏晓, 沈娟章, 谭卫红. 液体闪烁计数法鉴别生物质基泡沫材料. 林产化学与工业, 2016, 36(1), 49–54.
Telloli, C.; Rizzo, A.; Canducci, C.; Bartolomei, P.Determination of bio content in polymers used in the packaging of food products. Radiocarbon, 2019, 61(6), 1973–1981.
Tachibana, Y.; Masuda, T.; Funabashi, M.; Kunioka, M.Chemical synthesis of fully biomass-based poly(butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio. Biomacromolecules, 2010, 11(10), 2760–2765.
Taguchi, K.; Kunioka, M.; Funabashi, M.; Ninomiya, F.Estimation of the biobased carbon content of polypropylene resin in composites on the basis of the carbon 14 concentration. J. Appl. Polym. Sci., 2014, 131(6), e39978.
Bridson, J. H.; Gaugler, E. C.; Smith, D. A.; Northcott, G. L.; Gaw, S.Leaching and extraction of additives from plastic pollution to inform environmental risk: a multidisciplinary review of analytical approaches. J. Hazard. Mater., 2021, 414, 125571.
赵创创, 林勤保, 陈杰, 钟怀宁, 李烃. 三种生物可降解复合薄膜性能比较及(半)挥发性物质分析. 塑料, 2023, 52(5), 177–182.
李成发, 龚丽雯, 张玉爽, 廖文忠, 王成云, 林君峰, 谢堂堂. 塑料食品接触材料中13种丙烯酸酯单体的热解吸-气质联用法测定. 福建分析测试, 2023, 32(3), 9–13.
郭上, 陈光仕, 周静, 梁文耀, 谭建华, 彭先芝. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱非靶向筛查生物消化液浸滤作用下塑料制品中添加剂的释放. 分析化学, 2022, 50(9), 1373–1383.
Hu, Y. J.; Du, Z. X.; Sun, X. C.; Ma, X.; Song, J. D.; Sui, H. X.; Debrah, A. A.Non-targeted analysis and risk assessment of non-volatile compounds in polyamide food contact materials. Food Chem., 2021, 345, 128625.
Lin, J.; Wu, W. L.; Zhong, A. H.; Xian, Y. P.; Zhong, H. N.; Dong, B.; Liang, M.; Hu, J. P.; Wu, Y. N.; Yang, X. F.; Sui, H. X.; Zhou, Q.Non-targeted analysis and risk assessment of intentionally and non-intentionally added substances migrating from the emerging biodegradable food contact material poly(butylene adipate-co-terephthalate)/modified starch blend film. Food Packag. Shelf Life, 2023, 40, 101190.
Xu, Z. Y.; Chughtai, H.; Tian, L.; Liu, L.; Roy, J. F.; Bayen, S.Development of quantitative structure-retention relationship models to improve the identification of leachables in food packaging using non-targeted analysis. Talanta, 2023, 253, 123861.
Shi, X. N.; Zhu, X. X.; Jiang, Q.; Ma, T. Z.; Du, Y. P.; Wu, T.Determination of contaminants in polyolefin recyclates by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Anal. Lett., 2023, 56(5), 758–768.
Tian, Z. Y.; Zhao, H. Q.; Peter, K. T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X. M.; Prat, J.; Mudrock, E.; Hettinger, R.; Cortina, A. E.; Biswas, R. G.; Kock, F. V. C.; Soong, R.; Jenne, A.; Du, B. W.; Hou, F.; He, H.; Lundeen, R.; Gilbreath, A.; Sutton, R.; Scholz, N. L.; Davis, J. W.; Dodd, M. C.; Simpson, A.; McIntyre, J. K.; Kolodziej, E. P.A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science, 2021, 371(6525), 185–189.
Hu, X. M.; Zhao, H. N.; Tian, Z. Y.; Peter, K. T.; Dodd, M. C.; Kolodziej, E. P.Transformation product formation upon heterogeneous ozonation of the tire rubber antioxidant 6PPD (N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine). Environ. Sci. Technol. Lett., 2022, 9(5), 413–419.
Hiki, K.; Asahina, K.; Kato, K.; Yamagishi, T.; Omagari, R.; Iwasaki, Y.; Watanabe, H.; Yamamoto, H.Acute toxicity of a tire rubber-derived chemical, 6PPD quinone, to freshwater fish and crustacean species. Environ. Sci. Technol. Lett., 2021, 8(9), 779–784.
Tian, Z. Y.; Gonzalez, M.; Rideout, C. A.; Zhao, H. N.; Hu, X. M.; Wetzel, J.; Mudrock, E.; James, C. A.; McIntyre, J. K.; Kolodziej, E. P.6PPD-quinone: revised toxicity assessment and quantification with a commercial standard. Environ. Sci. Technol. Lett., 2022, 9(2), 140–146.
Liu, Q. F.; Li, L.; Zhang, X. M.; Saini, A.; Li, W. L.; Hung, H.; Hao, C. Y.; Li, K.; Lee, P.; Wentzell, J. J. B.; Huo, C. Y.; Li, S. M.; Harner, T.; Liggio, J.Uncovering global-scale risks from commercial chemicals in air. Nature, 2021, 600(7889), 456–461.
张裕祥, 高峡. 一种力学加速高分子材料老化及捕获老化产物的装置.中国专利, ZL202010077024.2, 2023-07-25.
安振华, 叶焱, 许治平, 杨睿. 聚烯烃老化的时空谱: 多因素耦合老化动力学研究. 高分子学报, 2021, 52(11), 1514–1522.
Von White, G. II,Clough, R. L.; Hochrein, J. M.; Bernstein, R.Application of isotopic labeling, and gas chromatography mass spectrometry, to understanding degradation products and pathways in the thermal-oxidative aging of nylon 6.6. Polym. Degrad. Stabil., 2013, 98(12), 2452–2465.
Kaykhaii, M.; Sarafraz-Yazdi, A.; Chamsaz, M.; Pawliszyn, J.Membrane extraction with sorbent interface-gas chromatography as an effective and fast means for continuous monitoring of thermal degradation products of polyacrylonitrile. Analyst, 2002, 127(7), 912–916.
European Union, 2023. Commission Regulation (EU) 2023/2055 of 25 September 2023 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Synthetic Polymer Microparticles. Official Journal of the European Union.
Fossi, M. C.; Pedà, C.; Compa, M.; Tsangaris, C.; Alomar, C.; Claro, F.; Ioakeimidis, C.; Galgani, F.; Hema, T.; Deudero, S.; Romeo, T.; Battaglia, P.; Andaloro, F.; Caliani, I.; Casini, S.; Panti, C.; Baini, M.Bioindicators for monitoring marine litter ingestion and its impacts on Mediterranean biodiversity. Environ. Pollut., 2018, 237, 1023–1040.
Dong, M. T.; Zhang, Q. Q.; Xing, X. L.; Chen, W.; She, Z. B.; Luo, Z. J.Raman spectra and surface changes of microplastics weathered under natural environments. Sci. Total Environ., 2020, 739, 139990.
Liu, P.; Zhan, X.; Wu, X. W.; Li, J. L.; Wang, H. Y.; Gao, S. X.Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere, 2020, 242, 125193.
Azizi, N.; Khoshnamvand, N.; Nasseri, S.The quantity and quality assessment of microplastics in the freshwater fishes: a systematic review and meta-analysis. Reg. Stud. Mar. Sci., 2021, 47, 101955.
Luo, Z. X.; Zhou, X. Y.; Su, Y.; Wang, H. M.; Yu, R. L.; Zhou, S. F.; Xu, E. G.; Xing, B. S.Environmental occurrence, fate, impact, and potential solution of tire microplastics: similarities and differences with tire wear particles. Sci. Total Environ., 2021, 795, 148902.
Ding, L.; Mao, R. F.; Ma, S. R.; Guo, X. T.; Zhu, L. Y.High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Res., 2020, 174, 115634.
Sun, H. F.; Lei, C. L.; Xu, J. H.; Li, R. L.Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J. Hazard. Mater., 2021, 416, 125854.
Li, L. Z.; Luo, Y. M.; Li, R. J.; Zhou, Q.; Peijnenburg, W. J. G. M.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. C.Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain., 2020, 3, 929–937.
Syberg, K.; Khan, F. R.; Selck, H.; Palmqvist, A.; Banta, G. T.; Daley, J.; Sano, L.; Duhaime, M. B.Microplastics: addressing ecological risk through lessons learned. Environ. Toxicol. Chem., 2015, 34(5), 945–953.
胡佳玲, 张天龙, 陈杰, 林勤保, 钟怀宁, 穆景利. 微塑料在食品中的来源及其检测技术研究进展. 分析测试学报, 2021, 40(11), 1672–1680.
Kedzierski, M.; Lechat, B.; Sire, O.; Le Maguer, G.; Le Tilly, V.; Bruzaud, S.Microplastic contamination of packaged meat: occurrence and associated risks. Food Packag. Shelf Life, 2020, 24, 100489.
Schymanski, D.; Oßmann, B. E.; Benismail, N.; Boukerma, K.; Dallmann, G.; von der Esch, E.; Fischer, D.; Fischer, F.; Gilliland, D.; Glas, K.; Hofmann, T.; Käppler, A.; Lacorte, S.; Marco, J.; Rakwe, M. E.; Weisser, J.; Witzig, C.; Zumbülte, N.; Ivleva, N. P.Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. Anal. Bioanal. Chem., 2021, 413(24), 5969–5994.
Hernandez, L.; Xu, E. G.; Larsson, H. C. E.; Tahara, R.; Maisuria, V. B.; Tufenkji, N.Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol., 2019, 53(21), 12300–12310.
Kirstein, I. V.; Hensel, F.; Gomiero, A.; Iordachescu, L.; Vianello, A.; Wittgren, H. B.; Vollertsen, J.Drinking plastics? –Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS. Water Res., 2021, 188, 116519.
郑鑫, 由吉春, 朱雨田, 李勇进. 扫描电镜技术在高分子表征研究中的应用. 高分子学报, 2022, 53(5), 539–560.
王绍娟, 辛瑞, 扈健, 张昊, 闫寿科. 透射电子显微镜在聚合物不同层次结构研究中的应用. 高分子学报, 2022, 53(3), 289–306.
Birch, Q. T.; Potter, P. M.; Pinto, P. X.; Dionysiou, D. D.; Al-Abed, S. R.Isotope ratio mass spectrometry and spectroscopic techniques for microplastics characterization. Talanta, 2021, 224, 121743.
Ranjan, V. P.; Joseph, A.; Goel, S.Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard. Mater., 2021, 404(Pt B), 124118.
Laborda, F.; Trujillo, C.; Lobinski, R.Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope. Talanta, 2021, 221, 121486.
Huvet, A.; Paul-Pont, I.; Fabioux, C.; Lambert, C.; Suquet, M.; Thomas, Y.; Robbens, J.; Soudant, P.; Sussarellu, R.Reply to Lenz et al.: quantifying the smallest microplastics is the challenge for a comprehensive view of their environmental impacts. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(29), E4123–E4124.
汤庆峰, 李琴梅, 王佳敏, 张裕祥, 高峡. 显微-傅里叶变换红外光谱鉴别分析微塑料. 中国塑料, 2021, 35(8), 172–180.
Chen, Q.; Wang, J. M.; Yao, F. Q.; Zhang, W.; Qi, X. H.; Gao, X.; Liu, Y.; Wang, J. M.; Zou, M. Q.; Liang, P.A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochim. Acta, 2023, 190(12), 465.
汤庆峰, 高峡, 邵鹏, 杨明, 魏炜, 王佳敏, 贾崇赟. 一种区域水环境中的微塑料样品采集装置. 中国专利, CN219870406U, 2023-02-02.
汤庆峰, 高峡, 张裕祥, 李琴梅, 王佳敏. 一种土壤中微塑料的提取分离及净化分级系统. 中国专利, CN215202941U, 2021-02-05.
汤庆峰, 高峡, 邵鹏, 王佳敏. 一种土壤或沉积物中微塑料的提取装置及提取分离装置. 中国专利, CN219455-625U, 2022-09-07.
汤庆峰, 高峡. 一种土壤微塑料提取中非塑料有机杂质的去除方法, 中国专利, CN115615790A, 2022-09-05.
汤庆峰, 高峡. 一种微塑料分级分离过滤套装及装置. 中国专利, CN218865626U, 2022-09-07.
汤庆峰, 高峡. 一种土壤中微塑料的提取分离及净化方法. 中国专利, CN113155558A, 2021-02-05.
李珊, 张岚, 邢方潇, 陈永艳, 岳银玲. 红外显微光谱法测定生活饮用水中微塑料. 净水技术, 2021, 40(1), 44–48.
汤庆峰, 高峡, 李琴梅, 高丽娟, 张裕祥, 邵鹏, 陈啟荣. 农田土壤微塑料污染研究现状与问题思考. 安徽农业科学, 2021, 49(15), 72–78.
汤庆峰, 王佳敏, 李琴梅, 高峡, 邓平晔, 邵鹏, 魏炜, 王红燕. 农田土壤中微塑料测试方法比较及应用研究. 中国测试, 2022, 48(10), 145–151.
Yu, K. H.; Chai, B. B.; Zhuo, T. Y.; Tang, Q. F.; Gao, X.; Wang, J. M.; He, L. X.; Lei, X. H.; Chen, B.Hydrostatic pressure drives microbe-mediated biodegradation of microplastics in surface sediments of deep reservoirs: novel findings from hydrostatic pressure simulation experiments. Water Res., 2023, 242, 120185.
贺雨田, 杨颉, 隋海霞, 杜振霞, 宋雁. 基于显微光谱法的双壳类海洋生物中微塑料的检测方法研究. 分析测试学报, 2021, 40(7), 1055–1061.
汤庆峰, 李琴梅, 魏晓晓, 邵鹏, 高丽娟, 陈啟荣, 胡光辉, 刘伟丽, 高峡. 环境样品中微塑料分析技术研究进展. 分析测试学报, 2019, 38(8), 1009–1019.
《景观环境用水中微塑料的测定 傅里叶变换显微红外光谱法》T/CSTM 00563-2022
《污水中微塑料的测定 傅里叶变换显微红外光谱法》(标准立项编号CSTM LX 0003 00884-2022)
《饮用水中微塑料的测定 傅里叶变换显微红外光谱法》(标准立项编号CSTM LX 0003 00911-2022)
《海产品中微塑料的测定 傅里叶变换显微红外光谱法》(标准立项编号CSTM LX 0003 00887-2022)
《土壤中微塑料的测定显微红外光谱法》(标准立项编号CSTM LX 0003 00885-2022)
《地下水中微塑料的测定 傅里叶变换显微红外光谱法》(标准立项编号CSTM LX 0003 00886-022)
叶焱, 孟祥泽, 唐国烁, 金广轩, 杨睿, 谢续明. 高分子材料的生物降解性能表征. 高分子学报, 2023, 54(9), 1363–1384.
Cheng, J. G.; Eyheraguibel, B.; Jacquin, J.; Pujo-Pay, M.; Conan, P.; Barbe, V.; Hoypierres, J.; Deligey, G.; Ter Halle, A.; Bruzaud, S.; Ghiglione, J. F.; Meistertzheim, A. L.Biodegradability under marine conditions of bio-based and petroleum-based polymers as substitutes of conventional microparticles. Polym. Degrad. Stabil., 2022, 206, 110159.
王粉粉, 孙平川. 固体核磁共振技术在高分子表征研究中的应用. 高分子学报, 2021, 52(7), 840–856.
Hakkou, K.; Molina-Pinilla, I.; Rangel-Núñez, C.; Suárez-Cruz, A.; Pajuelo, E.; Bueno-Martínez, M.Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polym. Degrad. Stabil., 2019, 167, 302–312.
Iqbal, S.; Nadeem, S.; Bano, R.; Bahadur, A.; Ahmad, Z.; Javed, M.; AL-Anazy, M. M.; Ali Qasier, A.; Laref, A.; Shoaib, M.; Liu, G. C.; Qayyum, M. A.Green synthesis of biodegradable terpolymer modified starch nano-composite with carbon nanoparticles for food packaging application. J. Appl. Polym. Sci., 2021, 138(25), 50604.
周超, 杨京法, 赵江. 荧光关联光谱在高分子单链研究中的应用. 高分子学报, 2021, 52(3), 321–334.
Šašinková, D.; Serbruyns, L.; Julinová, M.; FayyazBakhsh, A.; De Wilde, B.; Koutný, M.Evaluation of the biodegradation of polymeric materials in the freshwater environment—an attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stabil., 2022, 203, 110085.
Ganesh Kumar, A.; Hinduja, M.; Sujitha, K.; Nivedha Rajan, N.; Dharani, G.Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Sci. Total Environ., 2021, 774, 145002.
Rizzarelli, P.; La Carta, S.; Mirabella, E. F.; Rapisarda, M.; Impallomeni, G.Sequencing biodegradable and potentially biobased polyesteramide of sebacic acid and 3-amino-1-propanol by MALDI TOF-TOF tandem mass spectrometry. Polymers, 2022, 14(8), 1500.
0
浏览量
99
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构