浏览全部资源
扫码关注微信
1..辽宁工程技术大学材料科学与工程学院,阜新 123000
2..辽宁省矿物高值化与储能材料重点实验室,阜新 123000)
*王鸣,E-mail: wangming@lntu.edu.cn;洪伟,E-mail: hongwei20160211@126.com
*王鸣,E-mail: wangming@lntu.edu.cn;洪伟,E-mail: hongwei20160211@126.com
纸质出版日期:2024-08,
收稿日期:2024-01-17,
录用日期:2024-03-01
扫 描 看 全 文
王鸣, 李冬月, 冷欣阳, 王靖雯, 洪伟. 基于静电纺丝技术的锂离子电池硅碳复合负极材料的应用进展. 高分子通报, 2024, 37(8), 1024–1036
Wang, M.; Li, D. Y.; Leng, X. Y.; Wang, J. W.; Hong, W. Progress in the application of silicon-carbon composite anode materials for lithium-ion batteries based on electrospinning technology. Polym. Bull. (in Chinese), 2024, 37(8), 1024–1036
王鸣, 李冬月, 冷欣阳, 王靖雯, 洪伟. 基于静电纺丝技术的锂离子电池硅碳复合负极材料的应用进展. 高分子通报, 2024, 37(8), 1024–1036 DOI: 10.14028/j.cnki.1003-3726.2024.24.021.
Wang, M.; Li, D. Y.; Leng, X. Y.; Wang, J. W.; Hong, W. Progress in the application of silicon-carbon composite anode materials for lithium-ion batteries based on electrospinning technology. Polym. Bull. (in Chinese), 2024, 37(8), 1024–1036 DOI: 10.14028/j.cnki.1003-3726.2024.24.021.
静电纺丝纳米纤维锂离子电池硅碳负极复合材料
ElectrospinningNanofibersLithium-ion batteriesSilicon carbon anodeComposite material
Yang, Y. J.; Wu, S. X.; Zhang, Y. P.; Liu, C. B.; Wei, X. J.; Luo, D.; Lin, Z.Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J., 2021, 406, 126807.
Zafar Abbas Manj, R.; Zhang, F. Z.; Ur Rehman, W.; Luo, W.; Yang, J. P.Toward understanding the interaction within silicon-based anodes for stable lithium storage. Chem. Eng. J., 2020, 385, 123821.
Yuda, A. P.; Koraag, P. Y. E.; Iskandar, F.; Wasisto, H. S.; Sumboja, A.Advances of the top-down synthesis approach for high-performance silicon anodes in Li-ion batteries. J. Mater. Chem. A, 2021, 9(35), 18906–18926.
Salah, M.; Hall, C.; Alvarez de Eulate, E.; Murphy, P.; Francis, C.; Kerr, R.; Pathirana, T.; Fabretto, M.Compressively stressed silicon nanoclusters as an antifracture mechanism for high-performance lithium-ion battery anodes. ACS Appl. Mater. Interfaces, 2020, 12(35), 39195–39204.
Jang, J.; Kim, H.; Lim, H.; Kim, K. J.; Jung, H. G.; Kim, S. O.; Choi, W.Surfactant-based selective assembly approach for Si-embedded silicon oxycarbide composite materials in lithium-ion batteries. Chem. Eng. J., 2020, 401, 126091.
Hong, W. W.; Ge, P.; Jiang, Y. L.; Yang, L.; Tian, Y.; Zou, G. Q.; Cao, X. Y.; Hou, H. S.; Ji, X. B.Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl. Mater. Interfaces, 2019, 11(11), 10829–10840.
Chen, Y. L.; Hu, Y.; Shen, Z.; Chen, R. Z.; He, X.; Zhang, X. W.; Li, Y. Q.; Wu, K. S.Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries. J. Power Sources, 2017, 342, 467–475.
Li, Z.; Yin, Q. F.; Hu, W. W.; Zhang, J. W.; Guo, J. H.; Chen, J. P.; Sun, T. H.; Du, C. Q.; Shu, J.; Yu, L. G.; Zhang, J. W.Tin/tin antimonide alloy nanoparticles embedded in electrospun porous carbon fibers as anode materials for lithium-ion batteries. J. Mater. Sci., 2019, 54(12), 9025–9033.
Li, Z.; Zhang, J. W.; Shu, J.; Chen, J. P.; Gong, C. H.; Guo, J. H.; Yu, L. G.; Zhang, J. W.Carbon nanofibers with highly dispersed tin and tin antimonide nanoparticles: preparation via electrospinning and application as the anode materials for lithium-ion batteries. J. Power Sources, 2018, 381, 1–7.
李亢悔, 蔡佳伟, 张自航, 吴述平. 天然高分子静电纺丝水处理膜的研究进展. 高分子通报, 2022, (3), 28–36.
Dawson, C.; Xu, F.; Hoare, T.Reactive cell electro-spinning of anisotropically aligned and bilayer hydrogel nanofiber networks. ACS Biomater. Sci. Eng., 2023, 9(11), 6490–6503.
蓝艳姣, 廖华珍, 许海棠, 周菊英, 韦贻春. 静电纺丝法制备丹皮酚纤维膜的综合实验设计. 高分子通报, 2022, (8), 89–93.
刘尚鹏, 冯玉洁, 李纪伟, 马建伟, 陈韶娟. 磁控溅射改性医用静电纺丝纳米纤维的研究进展. 高分子通报, 2022, (3), 1–7.
齐鹏, 贾宏葛, 李俊. 离子液体封端聚酰亚胺/聚乙烯吡咯烷酮静电纺丝纤维膜的制备及其油水分离性能研究. 高分子通报, 2022, (6), 62–70.
李海宁, 权文文, 徐超, 吴悦. AgNPs-AC复合纤维的制备及其吸附与抗菌性能. 高分子通报, 2022, (9), 32–41.
Spivak, A. F.; Dzenis, Y. A.Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field. Appl. Phys. Lett., 1998, 73(21), 3067.
Spivak, A. F.; Dzenis, Y. A.; Reneker, D. H.A model of steady state jet in the electrospinning process. Mech. Res. Commun., 2000, 27(1), 37–42.
Wang, L.; Ding, C. X.; Zhang, L. C.; Xu, H. W.; Zhang, D. W.; Cheng, T.; Chen, C. H.A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sources, 2010, 195(15), 5052–5056.
Xu, Y.; Yuan, T.; Bian, Z. H.; Sun, H.; Pang, Y. P.; Peng, C. X.; Yang, J. H.; Zheng, S. Y.Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery. Compos. Commun., 2019, 11, 1–5.
Li, H.; Yan, X. M.; Ma, Z. F.; Zhang, Y.; Li, C. H.; Xiao, W.; Jiang, Y.Silicon oxycarbide-carbon hybrid nanofibers: a promising anode for ultralong-cycle lithium ion batteries with high rate capability. Ceram. Int., 2021, 47(5), 6867–6874.
Pei, Y. X.; Wang, Y. X.; Chang, A. Y.; Liao, Y. X.; Zhang, S.; Wen, X. F.; Wang, S. N.Nanofiber-in-microfiber carbon/silicon composite anode with high silicon content for lithium-ion batteries. Carbon, 2023, 203, 436–444.
Hamedani, A. A.; Ow-Yang, C. W.; Hayat Soytas, S.Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile—TEOS precursor as high-performance lithium-ion battery anodes. J. Alloys Compd., 2022, 909, 164734.
Yu, J.; Zhang, C. R.; Wu, W. D.; Cai, Y. K.; Zhang, Y. F.Nodes-connected silicon-carbon nanofibrous hybrids anodes for lithium-ion batteries. Appl. Surf. Sci., 2021, 548, 148944.
Xiong, M.; Bie, X.; Dong, Y. W.; Wang, B.; Zhang, Q. C.; Xie, X. J.; Liu, T.; Huang, R. H.Encapsulation of silicon nano powders via electrospinning as lithium ion battery anode materials. Materials, 2023, 16(9), 3566.
Jayabalan, A. D.; Din, M. M. U.; Indu, M. S.; Karthik, K.; Ragupathi, V.; Nagarajan, G. S.; Panigrahi, P.; Murugan, R.Electrospun 3D CNF-SiO2 fabricated using non-biodegradable silica gel as prospective anode for lithium—ion batteries. Ionics, 2019, 25(11), 5305–5313.
Zheng, Y. C.; Kong, X. Z.; Usman, I.; Xie, X. F.; Liang, S. Q.; Cao, G. Z.; Pan, A. Q.Rational design of the pea-pod structure of SiOx/C nanofibers as a high-performance anode for lithium ion batteries. Inorg. Chem. Front., 2020, 7(8), 1762–1769.
Kong, X. Z.; Luo, S.; Rong, L. Y.; Xie, X. F.; Zhou, S.; Chen, Z. Q.; Pan, A. Q.Enveloping a Si/N-doped carbon composite in a CNT-reinforced fibrous network as flexible anodes for high performance lithium-ion batteries. Inorg. Chem. Front., 2021, 8(19), 4386–4394.
Fang, X.; Liu, C. Y.; Peng, H.; Li, Y.; Yang, Y. G.Gel electrolyte and anode material derived from electro-spun polyacrylonitrile/polysilsesquioxane composite and application in advanced lithium-ion batteries. Mater. Lett., 2024, 354, 135391.
Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W.Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett., 2012, 12(2), 802–807.
Li, Y. R.; Wang, R. Y.; Zhang, J. W.; Chen, J. P.; Du, C. Q.; Sun, T. H.; Liu, J.; Gong, C. H.; Guo, J. H.; Yu, L. G.; Zhang, J. W.Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries. Ceram. Int., 2019, 45(13), 16195–16201.
Liu, S. W.; Xu, W. H.; Ding, C. H.; Yu, J. J.; Fang, D.; Ding, Y. C.; Hou, H. Q.Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon. Appl. Surf. Sci., 2019, 494, 94–100.
Xu, Y. H.; Zhu, Y. J.; Han, F. D.; Luo, C.; Wang, C. S.3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater., 2015, 5(1), 1400753.
Li, W. W.; Peng, J.; Li, H.; Wu, Z. Y.; Huang, Y. H.; Chang, B. B.; Guo, X. W.; Chen, G. R.; Wang, X. Y.Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery. ACS Appl. Energy Mater., 2021, 4(8), 8529–8537.
Yan, Y.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Yan, G. C.; Wang, J. X.Electrospinning-enabled Si/C nanofibers with dual modification as anode materials for high-performance lithium-ion batteries. Acta Metall. Sin. Engl. Lett., 2021, 34(3), 329–336.
Tan, F. J.; Guo, H. J.; Wang, Z. X.; Niu, X. P.; Li, X. H.; Yan, G. C.; Wang, J. X.; Peng, W. J.; Hu, Q. Y.Electrospinning-enabled SiOx@TiO2/C fibers as anode materials for lithium-ion batteries. J. Alloys Compd., 2021, 888, 161635.
Liu, S. L.; Wang, Q. T.; Wang, R.; Cui, X.Dual-layer carbon protected coaxial cable-like Si-based composites as high-performance anodes for lithium-ion batteries. J. Alloys Compd., 2022, 896, 163069.
Lin, X. Q.; Gao, J. G.; Zhong, K. H.; Huang, Y. C.; Yao, H. R.; Lin, Y. B.; Zheng, Y. P.; Huang, Z. G.; Li, J. X.Fe/Fe3C modification to effectively achieve high-performance Si-C anode materials. J. Mater. Chem. A, 2022, 10(43), 23103–23112.
Pan, J.; Sun, C.; Zhao, X.; Liu, J.; Wang, C.; Jiao, C.; Sun, J.; Wang, Q.Preparation of dually modified Si@NiO@CNFs as high-performance anodes for lithium-ion batteries by electrospinning. Mater. Today Sustain., 2023, 24, 100503.
Xian, Z.; Tao, J.; Yu, J. G.; Yang, Y. H.; Yu, L.; Ding, Y.; Wang, F.Si@SiOx/CNF flexible anode prepared by electrospinning for Li-ion batteries. Russ. J. Electrochem., 2023, 59(5), 430–440.
Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K.Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces, 2013, 5(22), 12005–12010.
Li, C. H.; Yuan, C. S.; Zhu, J. Y.; Ni, X. P.; Li, K. M.; Wang, L.; Qi, Y. J.; Ju, A. Q.Fabrication of silicon nanoparticles/porous carbon@porous carbon nanofibers core-shell structured composites as high-performance anodes for lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 655, 129721.
Li, Y. R.; Liu, X. Y.; Zhang, J. W.; Yu, H. T.; Zhang, J. W.Carbon-coated Si/N-doped porous carbon nanofibre derived from metal-organic frameworks for Li-ion battery anodes. J. Alloys Compd., 2022, 902, 163635.
Wang, Y. Q.; Yuan, C. S.; Li, K. M.; Li, D.; Ju, A. Q.Freestanding porous silicon@heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries. ACS Appl. Energy Mater., 2022, 5(9), 11462–11471.
Nakano, H.; Oh-ishi, K.; Matsubara, M.Tailoring the void space of a silicon anode for high-capacity and low-expansion lithium storage. Energy Technol., 2022, 10(11), 2200236.
Zhou, X. S.; Wan, L. J.; Guo, Y. G.Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small, 2013, 9(16), 2684–2688.
0
浏览量
98
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构