浏览全部资源
扫码关注微信
辽宁石油化工大学石油化工学院,抚顺 113001
*邓玉媛,E-mail: dengyylnpu@126.com
纸质出版日期:2024-09-20,
网络出版日期:2024-03-27,
收稿日期:2024-01-27,
录用日期:2024-02-21
移动端阅览
孙雪玲, 邓玉媛, 司薇薇, 韩媛媛. 聚硅醚的合成反应研究进展. 高分子通报, 2024, 37(9), 1233–1242
Sun, X. L.; Deng, Y. Y.; Si, W. W.; Han, Y. Y. Research progress in synthesis of poly(silyl ether)s. Polym. Bull. (in Chinese), 2024, 37(9), 1233–1242
孙雪玲, 邓玉媛, 司薇薇, 韩媛媛. 聚硅醚的合成反应研究进展. 高分子通报, 2024, 37(9), 1233–1242 DOI: 10.14028/j.cnki.1003-3726.2024.24.032.
Sun, X. L.; Deng, Y. Y.; Si, W. W.; Han, Y. Y. Research progress in synthesis of poly(silyl ether)s. Polym. Bull. (in Chinese), 2024, 37(9), 1233–1242 DOI: 10.14028/j.cnki.1003-3726.2024.24.032.
聚硅醚具有优异的热稳定性、较低的玻璃化转变温度等特点,尤其是主链上Si-O-C键能够水解或醇解,使其具有可降解、可回收性而获得关注,在材料科学和合成有机化学领域具有广阔的应用前景。本文总结了聚硅醚的研究进展,对各种合成聚硅醚的反应路线包括脱氢偶联反应、硅氢加成反应、与亲核试剂的缩合反应、与环氧化合物的加成反应进行了综述,最后对聚硅醚未来的研究方向进行了展望。
Poly(silyl ether)s have excellent thermal stability
low glass transition temperature
especially degradability and recyclability because of the hydrolysis or alcoholysis of Si-O-C bond on the main chains
which make them have a wide application prospect in the fields of materials science and organic chemistry. In this paper
research progress of poly(silyl ether)s was summarized
reaction routes for synthesis of poly(silyl ether)s including dehydrocoupling polymerization
hydrosilylation
condensation reaction with nucleophiles and addition reaction of epoxy compounds were reviewed. Finally
future research direction of poly(silyl ether)s was prospected.
聚硅醚硅氢加成脱氢偶联
Poly(silyl ether)sDehydrocoupling polymerizationHydrosilylation
Kamino, B. A.; Bender, T. P.The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem. Soc. Rev., 2013, 42(12), 5119–5130.
朱丹, 陈利贞, 刘辉, 武玉民. 聚硅氧烷嵌段共聚物的研究进展. 石油化工高等学校学报, 2019, 32(3), 1–7.
华修芳, 李川阳, 崔冬梅. 硅氢化聚合的研究进展. 高分子通报, 2016, (9), 203–226.
叶娟, 祖兆基, 林子谦, 向洪平, 章明秋.本征型自修复聚硅氧烷材料: 从单重动态交联网络到多重动态交联网络. 高分子学报, 2023, 54(7), 1028–1054.
Shieh, P.; Zhang, W. X.; Husted, K. E. L.; Kristufek, S. L.; Xiong, B. Y.; Lundberg, D. J.; Lem, J.; Veysset, D.; Sun, Y. C.; Nelson, K. A.; Plata, D. L.; Johnson, J. A.Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature, 2020, 583(7817), 542–547.
Shieh, P.; Nguyen, H. V. T.; Johnson, J. A.Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat. Chem., 2019, 11(12), 1124–1132.
Minegishi, S.; Ito, M.; Kameyama, A.; Nishikubo, T.Synthesis of poly(silyl ether)s containing pendant chloromethyl groups by the polyaddition of bis(oxetane)s with dichlorosilanes. J. Polym. Sci. A Polym. Chem., 2000, 38(12), 2254–2259.
Kawakami, Y.; Li, Y. N.Approaches to polymers containing a silicon-oxygen bond in the main chain. Des. Monomers Polym., 2000, 3(4), 399–419.
Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J.Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science, 2012, 335(6068), 567–570.
Luleburgaz, S.; Tunca, U.; Durmaz, H.Poly(silyl ether)s (silyl ether copolymers) via hydrosilylation of carbonyl compounds. Polym. Chem., 2023, 14(25), 2949–2957.
Paulasaari, J. K.; Weber, W. P.Ruthenium-catalyzed hydrosilation copolymerization of aromatic α,ω-diketones with 1,3-tetramethyldisiloxane. Macromolecules, 1998, 31(20), 7105–7107.
Abbina, S.; Bian, S.; Oian, C.; Du, G. D.Scope and mechanistic studies of catalytic hydrosilylation with a high-valent nitridoruthenium(VI). ACS Catal., 2013, 3(4), 678–684.
Zhao, M. D.; Xie, W. L.; Cui, C. M.Cesium carbonate catalyzed chemoselective hydrosilylation of aldehydes and ketones under solvent-free conditions. Chem. Eur. J., 2014, 20(30), 9259–9262.
Chidara, V. K.; Du, G. D.An efficient catalyst based on manganese salen for hydrosilylation of carbonyl compounds. Organometallics, 2013, 32(18), 5034–5037.
Mou, Z. H.; Xie, H. Y.; Wang, M. Y.; Liu, N.; Yao, C. G.; Li, L.; Liu, J. Y.; Li, S. H.; Cui, D. M.Mononuclear heteroscorpionate zwitterionic zinc terminal hydride: synthesis, reactivity, and catalysis for hydrosilylation of aldehydes. Organometallics, 2015, 34(16), 3944–3949.
周永贵, 王晓清, 孙蕾. 一种手性聚硅醚及其合成方法与应用. 中国, CN202010147708.5, 2020-03-05.
Parks, D. J.; Piers, W. E.Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J. Am. Chem. Soc., 1996, 118(39), 9440–9441.
Rendler, S.; Oestreich, M.Conclusive evidence for an S(N)2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. Angew. Chem. Int. Ed., 2008, 47(32), 5997–6000.
Parks, D. J.; Blackwell, J. M.; Piers, W. E.Studies on the mechanism of B(C6F5)3-catalyzed hydrosilation of carbonyl functions. J. Org. Chem., 2000, 65(10), 3090–3098.
Mabry, J. M.; Paulasaari, J. K.; Weber, W. P.Synthesis of poly(silyl ethers) by Ru-catalyzed hydrosilylation. Polymer, 2000, 41(12), 4423–4428.
Mabry, J. M.; Runyon, M. K.; Weber, W. P.Poly(silyl ether)s by ruthenium-catalyzed hydrosilylation poly-merization of aliphatic ω-dimethylsilyloxy ketones and copolymerization of aliphatic α,ω-diketones with α,ω-dihydridooligodimethylsiloxanes. Macromolecules, 2002, 35(6), 2207–2211.
Mabry, J. M.; Runyon, M. K.; Weber, W. P.Synthesis of copoly[arylene-1,2-dioxy/oligodimethylsiloxanylene]s by ruthenium-catalyzed dehydrogenative silylation copolymerization of o-quinones with α,ω-dihydridooligodimethylsiloxanes. Macromolecules, 2001, 34(21), 7264–7268.
Lázaro, G.; Iglesias, M.; Fernández-Alvarez, F. J.; Sanz Miguel, P. J.; Pérez-Torrente, J. J.; Oro, L. A.Synthesis of poly(silyl ether)s by Rhodium(I)–NHC catalyzed hydrosilylation: homogeneous versus heterogeneous catalysis. ChemCatChem, 2013, 5(5), 1133–1141.
Lázaro, G.; Fernández-Alvarez, F. J.; Iglesias, M.; Horna, C.; Vispe, E.; Sancho, R.; Lahoz, F. J.; Iglesias, M.; Pérez-Torrente, J. J.; Oro, L. A.Heterogeneous catalysts based on supported Rh–NHC complexes: synthesis of high molecular weight poly(silyl ether)s by catalytic hydrosilylation. Catal. Sci. Technol., 2014, 4(1), 62–70.
Li, C. Y.; Hua, X. F.; Mou, Z. H.; Liu, X. L.; Cui, D. M.Zinc-catalyzed hydrosilylation copolymerization of aromatic dialdehydes with diphenylsilane. Macromol. Rapid Commun., 2017, 38(22), 10.1002/marc.201700590file:///images/Eqn00001.201700590.
Wang, X. Q.; Zhai, X. Y.; Wu, B.; Bai, Y. Q.; Zhou, Y. G.Synthesis of chiral poly(silyl ether)s via CuH-catalyzed asymmetric hydrosilylation polymerization of diketones with silanes. ACS Macro Lett., 2020, 9(7), 969–973.
Sample, C. S.; Lee, S. H.; Bates, M. W.; Ren, J. M.; Lawrence, J.; Lensch, V.; Gerbec, J. A.; Bates, C. M.; Li, S. G.; Hawker, C. J.Metal-free synthesis of poly(silyl ether)s under ambient conditions. Macromolecules, 2019, 52(5), 1993–1999.
Sample, C. S.; Lee, S. H.; Li, S. G.; Bates, M. W.; Lensch, V.; Versaw, B. A.; Bates, C. M.; Hawker, C. J.Metal-free room-temperature vulcanization of silicones via borane hydrosilylation. Macromolecules, 2019, 52(19), 7244–7250.
Ashraf, M. A.; Liu, Z. L.; Li, C.; Zhang, D. Q.Recent advances in catalytic silylation of hydroxyl-bearing compounds: a green technique for protection of alcohols using Si-O bond formations. Appl. Organomet. Chem., 2021, 35(3), 6131.
Seliger, J.; Oestreich, M.Making the silylation of alcohols chiral: asymmetric protection of hydroxy groups. Chem Eur. J., 2019, 25(40), 9358–9365.
Morris, L. J.; Hill, M. S.; Mahon, M. F.; Manners, I.; McMenamy, F. S.; Whittell, G. R.Heavier alkaline-earth catalyzed dehydrocoupling of silanes and alcohols for the synthesis of metallo-polysilylethers. Chem. Eur. J., 2020, 26(13), 2954–2966.
Pramanik, S.; Fernandes, A.; Liautard, V.; Pucheault, M.; Robert, F.; Landais, Y.Dehydrogenative silylation of alcohols under Pd-nanoparticle catalysis. Chem. Eur. J., 2019, 25(3), 728–732.
Francos, J.; Borge, J.; Conejero, S.; Cadierno, V.Platinum complexes with a phosphino-oxime/oximate ligand. Eur. J. Inorg. Chem., 2018, 2018(27), 3176–3186.
Lv, H. P.; Laishram, R. D.; Chen, J. C.; Khan, R.; Zhu, Y. B.; Wu, S. Y.; Zhang, J. Q.; Liu, X. Y.; Fan, B. M.Photocatalyzed cross-dehydrogenative coupling of silanes with alcohols and water. Chem. Commun., 2021, 57(30), 3660–3663.
Kaźmierczak, J.; Kuciński, K.; Lewandowski, D.; Hreczycho, G.Ru-catalyzed dehydrogenative silylation of POSS-silanols with hydrosilanes: its introduction to one-pot synthesis. Inorg. Chem., 2019, 58(2), 1201–1207.
Sridhar, M.; Raveendra, J.; China Ramanaiah, B.; Narsaiah, C.An efficient synthesis of silyl ethers of primary alcohols, secondary alcohols, phenols and oximes with a hydrosilane using InBr3 as a catalyst. Tetrahedron Lett., 2011, 52(45), 5980–5982.
Li, Y. N.; Kawakami, Y.Efficient synthesis of poly(silyl ether)s by Pd/C and RhCl(PPh3)3-catalyzed cross-dehydrocoupling polymerization of bis(hydrosilane)s with diols. Macromolecules, 1999, 32(20), 6871–6873.
Zhai, X. Y.; Hu, S. B.; Shi, L.; Zhou, Y. G.Synthesis of poly(silyl ethers) via iridium-catalyzed dehydrocoupling polymerization. Organometallics, 2018, 37(14), 2342–2347.
Vijjamarri, S.; Chidara, V. K.; Rousova, J.; Du, G. D.Dehydrogenative coupling of alcohols and carboxylic acids with hydrosilanes catalyzed by a salen–Mn(V) complex. Catal. Sci. Technol., 2016, 6(11), 3886–3892.
Wang, X.; Li, P.; Li, Z. J.; Chen, W. X.; Zhou, H.; Zhao, Y. F.; Wang, X. Q.; Zheng, L. R.; Dong, J. C.; Lin, Y.; Zheng, X. S.; Yan, W. S.; Yang, J.; Yang, Z. K.; Qu, Y. T.; Yuan, T. W.; Wu, Y. E.; Li, Y. D.2D MOF induced accessible and exclusive Co single sites for an efficient O-silylation of alcohols with silanes. Chem. Commun., 2019, 55(46), 6563–6566.
周永贵, 翟小勇, 孙蕾. 一种聚硅醚及钴催化潜手性硅烷与二醇的选择性脱氢偶联合成聚硅醚的方法. 中国, CN202010485816. 3, 2020-06-01.
Lichtenberg, C.; Viciu, L.; Adelhardt, M.; Sutter, J.; Meyer, K.; de Bruin, B.; Grützmacher, H.Low-valent iron(i) amido olefin complexes as promotors for dehydrogenation reactions. Angew. Chem. Int. Ed., 2015, 54(19), 5766–5771.
Ohta, H.; Miyoshi, N.; Sakata, Y.; Okamoto, Y.; Hayashi, M.; Watanabe, Y.A N-heterocyclic carbene Ni(II) complex bearing bis(cyclopentadienyl) ligands as a precatalyst for the dehydrogenative silylation of alcohols with hydrosilanes. Tetrahedron Lett., 2015, 56(22), 2910–2912.
Anbu, N.; Dhakshinamoorthy, A.Cu3(BTC)2 catalyzed dehydrogenative coupling of dimethylphenylsilane with phenol and homocoupling of dimethylphenylsilane to disiloxane. J. Colloid Interface Sci., 2017, 490, 430–435.
Harinath, A.; Bhattacharjee, J.; Anga, S.; Panda, T. K.Dehydrogenative coupling of hydrosilanes and alcohols by alkali metal catalysts for facile synthesis of silyl ethers. Aust. J. Chem., 2017, 70(6), 724.
刘少杰, 张锐, 王利利, 杨德胜, 孙炳炎, 刘浩. 一种高聚合度Si-O-C型嵌段聚醚改性硅油的制备方法. 中国, CN20191036871.9, 2019-05-05.
Toutov, A. A.; Betz, K. N.; Haibach, M. C.; Romine, A. M.; Grubbs, R. H.Sodium hydroxide catalyzed dehydrocoupling of alcohols with hydrosilanes. Org. Lett., 2016, 18(22), 5776–5779.
Tanabe, Y.; Okumura, H.; Maeda, A.; Murakami, M.Mild and practical method for the silylation of alcohols using hydrosilanes and disilanes promoted by TBAF catalyst. Tetrahedron Lett., 1994, 35(45), 8413–8414.
Escorihuela, J.; Pujari, S. P.; Zuilhof, H.Organic monolayers by B(C6F5)3-catalyzed siloxanation of oxidized silicon surfaces. Langmuir, 2017, 33(9), 2185–2193.
Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E.B(C6F5)3-catalyzed silation of alcohols: a mild, general method for synthesis of silyl ethers. J. Org. Chem., 1999, 64(13), 4887–4892.
Fouilloux, H.; Rager, M. N.; Ríos, P.; Conejero, S.; Thomas, C. M.Highly efficient synthesis of poly(silylether)s: access to degradable polymers from renewable resources. Angew. Chem. Int. Ed., 2022, 61(7), e202113443.
Li, Y. N.; Seino, M.; Kawakami, Y.Asymmetric synthesis of optically active poly(silyl ether)s having reactive Si-H groups by stereoselective cross-dehy-drocoupling polymerization of bis(silane)s with diols. Macromolecules, 2000, 33(15), 5311–5314.
Zhai, X. Y.; Wang, X. Q.; Ding, Y. X.; Zhou, Y. G.Partially biobased polymers: the synthesis of polysilylethers via dehydrocoupling catalyzed by an anionic iridium complex. Chin. Chem. Lett., 2020, 31(5), 1197–1200.
Vijjamarri, S.; Chidara, V. K.; Du, G. D.Versatile manganese catalysis for the synthesis of poly(silylether)s from diols and dicarbonyls with hydrosilanes. ACS Omega, 2017, 2(2), 582–591.
Vijjamarri, S.; Streed, S.; Serum, E. M.; Sibi, M. P.; Du, G. D.Polymers from bioderived resources: synthesis of poly(silylether)s from furan derivatives catalyzed by a salen–Mn(V) complex. ACS Sustain. Chem. Eng., 2018, 6(2), 2491–2497.
Vijjamarri, S.; Hull, M.; Kolodka, E.; Du, G. D.Renewable isohexide-based, hydrolytically degradable poly(silyl ether)s with high thermal stability. ChemSusChem, 2018, 11(17), 2881–2888.
Wang, X. Q.; Bai, Y. Q.; Zhai, X. Y.; Wu, B.; Zhou, Y. G.Synthesis of poly(silyl ether)s via copper-catalyzed dehydrocoupling polymerization. Chin. Chem. Lett., 2022, 33(5), 2639–2642.
Zhai, X. Y.; Wang, X. Q.; Zhou, Y. G.Cobalt-catalyzed selective dehydrocoupling polymerization of prochiral silanes and diols. Eur. Polym. J., 2020, 134, 109832.
Lichtenberg, C.; Adelhardt, M.; Wörle, M.; Büttner, T.; Meyer, K.; Grützmacher, H.Mono- and dinuclear neutral and cationic iron(II) compounds supported by an amidinato-diolefin ligand: characterization and catalytic application. Organometallics, 2015, 34(12), 3079–3089.
Cheng, C.; Watts, A.; Hillmyer, M. A.; Hartwig, J. F.Polysilylether: a degradable polymer from biorenewable feedstocks. Angew. Chem. Int. Ed., 2016, 55(39), 11872–11876.
Oestreich, M.; Grajewska, A.Base-catalyzed dehy-drogenative Si-O coupling of dihydrosilanes: silylene protection of diols. Synlett, 2010, 2010(16), 2482–2484.
Cella, J.; Rubinsztajn, S.Preparation of polyary-loxysilanes and polyaryloxysiloxanes by B(C6F5)3 catalyzed polyetherification of dihydrosilanes and bis-phenols. Macromolecules, 2008, 41(19), 6965–6971.
Li, C. Y.; Wang, L. F.; Wang, M. Y.; Liu, B.; Liu, X. L.; Cui, D. M.Step-growth coordination polymerization of 5-hydroxymethyl furfural with dihydrosilanes: synergistic catalysis using heteroscopionate zinc hydride and B(C6F5)3. Angew. Chem. Int. Ed., 2019, 58(33), 11434–11438.
Parrott, M. C.; Luft, J. C.; Byrne, J. D.; Fain, J. H.; Napier, M. E.; Desimone, J. M.Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J. Am. Chem. Soc., 2010, 132(50), 17928–17932.
Drake, K.; Mukherjee, I.; Mirza, K.; Ji, H. F.; Wei, Y.Phenylethynyl and phenol end-capping studies of polybiphenyloxydiphenylsilanes for cross-linking and enhanced thermal stability. Macromolecules, 2011, 44(11), 4107–4115.
Liaw, D. J.; Liaw, B. Y.Synthesis and characterization of novel polyaryloxydiphenylsilane derived from 2,2′- dimethyl-biphenyl-4,4′-diol. J. Polym. Sci. A Polym. Chem., 1999, 37(24), 4591–4595.
Drake, K.; Mukherjee, I.; Mirza, K.; Ji, H. F.; Bradley, J. C.; Wei, Y.Novel diacetylinic aryloxysilane polymers: a new thermally cross-linkable high temperature polymer system. Macromolecules, 2013, 46(11), 4370–4377.
Mohammed, I. A.; Shahabuddin, S.; Khanam, R.; Saidur, R.Synthesis, characterization and antibacterial activity of novel poly(silyl ether)s based on palm and soy oils. Polímeros, 2018, 28(5), 406–412.
Padmanaban, M.; Kakimoto, M. A.; Imai, Y.Synthesis and characterization of new photosensitive poly-(oxyaryleneoxydisilane)s from 1, 2-bis(diethylamino) tetramethyldisilane and various bisphenols. J. Polym. Sci. A Polym. Chem., 1990, 28(11), 2997–3005.
Nye, S. A.; Swint, S. A.Synthesis and properties of polyoxyarylenesiloxanes. J. Polym. Sci. A Polym. Chem., 1994, 32(1), 131–138.
Nagasaki, Y.; Matsukura, F.; Kato, M.; Aoki, H.; Tokuda, T.New thermosensitive rubbery polymers. Synthesis of poly(siloxyethylene glycol) and its aqueous solution properties. Macromolecules, 1996, 29(18), 5859–5863.
Yun, S. B.; Park, Y. T.Synthesis and properties of poly(carbomethyloctylsiloxane)s by melt copolymerization of bis(diethylamino)methyloctylsilane and aryldiol derivatives. Bull. Korean Chem. Soc., 2008, 29(12), 2373–2378.
Jung, I. K.; Park, Y. T.Melt copolymerization reactions between 1,3-bis(diethylamino)tetramethyldisiloxane and aryldiol derivatives. Bull. Korean Chem. Soc., 2011, 32(4), 1303–1309.
Jung, E. A.; Park, Y. T.Synthesis and photoelectronic properties of thermally stable poly[oxy(2,7-fluoren-9-onenylene)oxy(diorganosilylene)]s. Bull. Korean Chem. Soc., 2012, 33(6), 2031–2036.
Jung, E. A.; Park, Y. T.Synthesis and properties of poly[oxy(arylene)oxy(tetramethyldisilylene)]s via melt copolymerization reaction. Bull. Korean Chem. Soc., 2013, 34(6), 1637–1642.
Nishikubo, T.; Kameyama, A.; Kimura, Y.; Fukuyo, K.Novel synthesis of poly(silyl ethers) by the addition reaction of bis(epoxides) with dichlorosilanes or bis-(chlorosilanes). Macromolecules, 1995, 28(13), 4361–4365.
Nishikubo, T.; Kameyama, A.; Hayashi, N.A novel synthesis of poly(silyl ether)s by addition reactions of diepoxide with dichlorosilane compounds. Polym. J., 1993, 25(9), 1003–1005.
Nishikubo, T.; Kameyama, A.; Kimura, Y.; Nakamura, T.New synthesis of poly(silyl ether) and poly-(germyl ether) by addition reactions of bisepoxides with dimethyldiphenoxysilane and dimethyldiphenoxy-germane. Macromolecules, 1996, 29(17), 5529–5534.
Liaw, D. J.Synthesis of poly(silyl ether) by the addition reaction of bisphenol-S diglycidyl ether and dichlorodiphenylsilane. Polymer, 1997, 38(20), 5217–5219.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构