浏览全部资源
扫码关注微信
中国石油大学(北京)新能源与材料学院,北京 102249
*张瑛,E-mail:zhangyinggroup@163.com
纸质出版日期:2024-09-20,
网络出版日期:2024-06-18,
收稿日期:2024-02-01,
录用日期:2024-05-06
移动端阅览
李佳纯, 韩晨光, 胡超, 魏天鹤, 贾妍, 张瑛. 电解水制氢以及氢燃料电池用聚电解质阴离子交换膜的研究进展. 高分子通报, 2024, 37(9), 1210–1221
Li, J. C.; Han, C. G.; Hu, C.; Wei, T. H.; Jia, Y.; Zhang, Y. Research progress of hydrogen production from water electrolysis of polyelectrolyte anion exchange membrane and fuel cell. Polym. Bull. (in Chinese), 2024, 37(9), 1210–1221
李佳纯, 韩晨光, 胡超, 魏天鹤, 贾妍, 张瑛. 电解水制氢以及氢燃料电池用聚电解质阴离子交换膜的研究进展. 高分子通报, 2024, 37(9), 1210–1221 DOI: 10.14028/j.cnki.1003-3726.2024.24.033.
Li, J. C.; Han, C. G.; Hu, C.; Wei, T. H.; Jia, Y.; Zhang, Y. Research progress of hydrogen production from water electrolysis of polyelectrolyte anion exchange membrane and fuel cell. Polym. Bull. (in Chinese), 2024, 37(9), 1210–1221 DOI: 10.14028/j.cnki.1003-3726.2024.24.033.
氢能是一种具有广阔应用前景的新能源,阴离子交换膜电解水制氢技术(AEMWE)与阴离子
交换膜氢燃料电池技术(AEMFC)被认为是极具发展前景的氢能源技术,两者均需要聚电解质阴离子交换膜(AEM)。本综述首先概述了AEMWE和AEMFC技术原理,提出AEM的技术要求,解释了AEM中OH
–
的传输机制。接着根据主链结构的不同,重点对聚芳醚类、聚苯并咪唑类、聚苯烷撑类、聚烯烃类阴离子交换膜的研究进展进行了详细介绍,旨在为今后AEM的研发和设计提供思路。
Hydrogen energy is a new energy source with broad application prospects. Anion exchange membrane electrolysis of water for hydrogen production (AEMWE) and anion exchange membrane hydrogen fuel cell (AEMFC) are considered as hydrogen energy technologies with great development prospects
both of which require polyelectrolyte anion exchange membrane (AEM). This review first summarizes the technical principles of AEMWE and AEMFC
puts forward the technical requirements of AEM
and explains the transmission mechanism of OH
–
in AEM. Then
according to the main chain structure
the research progress of poly(aryl ether)
polybenzimidazole
polybenzoylene and polyolefin anion exchange membranes is introduced in detail
aiming at providing ideas for the development and design of AEM in the future.
氢能电解水制氢氢燃料电池聚电解质阴离子交换膜
Hydrogen energyHydrogen production by water electrolysisHydrogen fuel cellPolyelectrolyte anion exchange membrane
Xu, T. W.Ion exchange membranes: state of their development and perspective. J. Membr. Sci., 2005, 263(1-2), 1–29.
Vincent, I.; Bessarabov, D.Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sust. Energ. Rev., 2018, 81, 1690–1704.
Kressman, T. R. E.Ion exchange resin membranes and resin-impregnated filter paper. Nature, 1950, 165, 568.
Merle, G.; Wessling, M.; Nijmeijer, K.Anion exchange membranes for alkaline fuel cells: a review. J. Membr. Sci., 2011, 377(1-2), 1–35.
Matsuda, Y.; Shiokawa, J.; Tamura, H.; Ishino, T.On the polarization of ion-exchange membrane fuel cells. Electrochim. Acta, 1967, 12(10), 1435–1440.
Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J. J.; Song, D. T.; Liu, Z. S.; Wang, H. J.; Shen, J.A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J. Power Sources, 2007, 165(2), 739–756.
Wu, X.; Scott, K.CuxCo3–xO4 (0≤x<1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers. J. Mater. Chem., 2011, 21(33), 12344–12351.
Pavel, C. C.; Cecconi, F.; Emiliani, C.; Santiccioli, S.; Scaffidi, A.; Catanorchi, S.; Comotti, M.Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew. Chem. Int. Ed., 2014, 53(5), 1378–1381.
Yu, R. J.; Yang, H. T.; Yu, X. H.; Cheng, J. X.; Tan, Y. H.; Wang, X.Preparation and research progress of anion exchange membranes. Int. J. Hydrog. Energy, 2024, 50, 582–604.
Grew, K. N.; Chiu, W.A dusty fluid model to predict hydroxyl ion conductivity in alkaline anion exchange membranes. ECS Trans., 2008, 13(23), 61–72.
Lee, S. H.; Rasaiah, J. C.Proton transfer and the mobilities of the H+ and OH– ions from studies of a dissociating model for water. J. Chem. Phys., 2011, 135(12), 124505.
Chen, N. J.; Lee, Y. M.Anion exchange polyelectrolytes for membranes and ionomers. Prog. Polym. Sci., 2021, 113, 101345.
Arges, C. G.; Ramani, V.Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes. Proc. Natl. Acad. Sci. USA, 2013, 110(7), 2490–2495.
Marino, M. G.; Kreuer, K. D.Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem, 2015, 8(3), 513–523.
Chen, H.; Tao, R.; Bang, K. T.; Shao, M.; Kim, Y.Anion exchange membranes for fuel cells: state-of-the-art and perspectives. Adv. Energy Mater., 2022, 12, 2200934.
Thomas, O. D.; Soo, K. J. W. Y.; Peckham, T. J.; Kulkarni, M. P.; Holdcroft, S.A stable hydroxide-conducting polymer. J. Am. Chem. Soc., 2012, 134(26), 10753–10756.
Zhu, H.; Li, Y. X.; Chen, N. J.; Lu, C. R.; Long, C.; Li, Z. M.; Liu, Q.Controllable physical-crosslinking poly(arylene 6-azaspiro[5.5]undecanium) for long-lifetime anion exchange membrane applications. J. Membr. Sci., 2019, 590, 117307.
Jeon, J. Y.; Park, S.; Han, J.; Maurya, S.; Mohanty, A. D.; Tian, D.; Saikia, N.; Hickner, M. A.; Ryu, C. Y.; Tuckerman, M. E.; Paddison, S. J.; Kim, Y. S.; Bae, C.Synthesis of aromatic anion exchange membranes by Friedel-Crafts bromoalkylation and cross-linking of polystyrene block copolymers. Macromolecules, 2019, 52(5), 2139–2147.
Grew, K. N.; Ren, X. M.; Chu, D.Effects of temperature and carbon dioxide on anion exchange membrane conductivity. Electrochem. Solid-State Lett., 2011, 14(12), B127.
Das, G.; Choi, J. H.; Nguyen, P. K. T.; Kim, D. J.; Yoon, Y. S.Anion exchange membranes for fuel cell application: a review. Polymers, 2022, 14(6): 1197.
Caielli, T.; Ferrari, A. R.; Bonizzoni, S.; Sediva, E.; Caprì, A.; Santoro, M.; Gatto, I.; Baglio, V.; Mustarelli, P.Synthesis, characterization and water electrolyzer cell tests of poly(biphenyl piperidinium) anion exchange membranes. J. Power Sources, 2023, 557, 232532.
Ren, J.; Xu, J.; Ju, M.; Chen, X.; Zhao, P.; Meng, L.; Lei, J.; Wang, Z.Long-term durable anion exchange membranes based on imidazole-functionalized poly(ether ether ketone) incorporating cationic metal-organic framework. Adv. Powder Mater., 2022, 1(2), 100017.
Li, K.; Chen, J.; Guan, M. M.; Tang, S. K.Novel multi-channel anion exchange membrane based on poly ionic liquid-impregnated cationic metal-organic frameworks. Int. J. Hydrog. Energy, 2020, 45(35), 17813–17823.
Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B.Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci., 2011, 36(11), 1521–1557.
Du, X. M.; Zhang, H. Y.; Yuan, Y. J.; Wang, Z.Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy Environ., 2021, 6(5), 743–750.
Park, E. J.; Kim, Y. S.Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance—a topical review. J. Mater. Chem. A, 2018, 6(32), 15456–15477.
Wang, C. Y.; Tao, Z. W.; Zhou, Y. P.; Zhao, X. Y.; Li, J.; Ren, Q.; Guiver, M. D.Anion exchange membranes with eight flexible side-chain cations for improved conductivity and alkaline stability. Sci. China Mater., 2020, 63(12), 2539–2550.
Qian, J. F.; Wang, C. Y.; Zhang, X. J.; Zhao, X. Y.; Li, J.; Ren, Q.Dense 1,2,4,5-tetramethylimidazolium-functionlized anion exchange membranes based on poly(aryl ether sulfone)s with high alkaline stability for water electrolysis. Int. J. Hydrog. Energy, 2023, 48(22), 8165–8178.
Qian, J. F.; Wang, C. Y.; Zhang, X. J.; Hu, J. X.; Zhao, X. Y.; Li, J.; Ren, Q.Quaternary ammonium-functionalized crosslinked poly(aryl ether sulfone)s anion exchange membranes with enhanced alkaline stability for water electrolysis. J. Membr. Sci., 2023, 685, 121946.
Du, X. M.; Wang, Z.; Liu, W. C.; Xu, J. M.; Chen, Z. Y.; Wang, C. M.Imidazolium-functionalized poly(arylene ether ketone) cross-linked anion exchange membranes. J. Membr. Sci., 2018, 566, 205–212.
Wang, S.; Wang, Z.; Xu, J. M.; Liu, Q.; Sui, Z. Y.; Du, X. M.; Cui, Y. H.; Yuan, Y. J.; Yu, J. J.; Wang, Y.; Chang, Y. F.Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J. Membr. Sci., 2022, 660, 120852.
Su, X.; Wang, J.; Xu, S. C.; Zhang, D. J.; He, R. H.Construction of macromolecule cross-linked anion exchange membranes containing free radical inhibitor groups for superior chemical stability. J. Membr. Sci., 2022, 660, 120844.
Xu, T. W.; Wu, D.; Wu, L.Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)—a versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci., 2008, 33(9), 894–915.
杨谦, 张瑜兰, 张秋根, 朱爱梅, 刘庆林. 高耐碱性交联型聚苯醚阴离子交换膜的制备. 膜科学与技术, 2020, 40(1), 16–22.
Sung, S.; Mayadevi, T. S.; Min, K.; Lee, J.; Chae, J. E.; Kim, T. H.Crosslinked PPO-based anion exchange membranes: the effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length. J. Membr. Sci., 2021, 619, 118774.
Yang, W. H.; Yan, J.; Liu, S.; Zhou, J. J.; Liu, J.; Zhang, Q. Y.; Yan, Y.Macromolecular crosslink of imidazole functionalized poly(vinyl alcohol) and brominated poly(phenylene oxide) for anion exchange membrane with enhanced alkaline stability and ionic conductivity. Int. J. Hydrog. Energy, 2021, 46(74), 37007–37016.
Wright, A. G.; Fan, J. T.; Britton, B.; Weissbach, T.; Lee, H. F.; Kitching, E. A.; Peckham, T. J.; Holdcroft, S.Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci., 2016, 9(6), 2130–2142.
Guo, M. L.; Ban, T.; Wang, Y. J.; Wang, X. X.; Zhu, X. L.“Thiol-ene” crosslinked polybenzimidazoles anion exchange membrane with enhanced performance and durability. J. Colloid Interface Sci., 2023, 638, 349–362.
Liu, G. L.; Wang, A. L.; Ji, W. X.; Zhang, F. F.; Wu, J. N.; Zhang, T. Y.; Tang, H. L.; Zhang, H. N.In-situ crosslinked, side chain polybenzimidazole-based anion exchange membranes for alkaline direct methanol fuel cells. Chem. Eng. J., 2023, 454, 140046.
Olsson, J. S.; Pham, T. H.; Jannasch, P.Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity. Adv. Funct. Mater., 2018, 28(2), 1702758.
苟维维, 张秋根, 朱爱梅, 刘庆林. 哌啶交联型聚亚芳基阴离子交换膜的制备. 膜科学与技术, 2022, 42(6), 22–30.
Chen, N. J.; Hu, C.; Wang, H. H.; Kim, S. P.; Kim, H. M.; Lee, W. H.; Bae, J. Y.; Park, J. H.; Lee, Y. M.Poly(alkyl-terphenyl piperidinium) ionomers and membranes with an outstanding alkaline-membrane fuel-cell performance of 2.58 W·cm–2. Angew. Chem. Int. Ed., 2021, 60(14), 7710–7718.
Olsson, J. S.; Pham, T. H.; Jannasch, P.Functionalizing polystyrene with N-alicyclic piperidine-based cations via friedel-crafts alkylation for highly alkali-stable anion-exchange membranes. Macromolecules, 2020, 53(12), 4722–4732.
Al Munsur, A. Z.; Hossain, I.; Nam, S. Y.; Chae, J. E.; Kim, T. H.Quaternary ammonium-functionalized hexyl bis(quaternary ammonium)-mediated partially crosslinked SEBSs as highly conductive and stable anion exchange membranes. Int. J. Hydrog. Energy, 2020, 45(31), 15658–15671.
0
浏览量
129
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构