浏览全部资源
扫码关注微信
山西师范大学物理与信息工程学院,太原 030032
*潘俊星,E-mail: panjx@sxnu.edu.cn;张进军,E-mail: zhangjinjun@sxnu.edu.cn
*潘俊星,E-mail: panjx@sxnu.edu.cn;张进军,E-mail: zhangjinjun@sxnu.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-31,
收稿日期:2024-02-21,
录用日期:2024-04-11
移动端阅览
王阳, 李静怡, 贺帅, 潘俊星, 张进军. 带电纳米粒子/嵌段共聚物混合体系有序结构的调控. 高分子通报, 2024, 37(9), 1263–1270
Wang, Y.; Li, J. Y.; He, S.; Pan, J. X.; Zhang, J. J. Regulation of ordered structure of charged nanoparticles/block copolymers mixed system. Polym. Bull. (in Chinese), 2024, 37(9), 1263–1270
王阳, 李静怡, 贺帅, 潘俊星, 张进军. 带电纳米粒子/嵌段共聚物混合体系有序结构的调控. 高分子通报, 2024, 37(9), 1263–1270 DOI: 10.14028/j.cnki.1003-3726.2024.24.048.
Wang, Y.; Li, J. Y.; He, S.; Pan, J. X.; Zhang, J. J. Regulation of ordered structure of charged nanoparticles/block copolymers mixed system. Polym. Bull. (in Chinese), 2024, 37(9), 1263–1270 DOI: 10.14028/j.cnki.1003-3726.2024.24.048.
本文采用基于含时金兹堡-朗道理论(Time-Dependent Ginzburg-Landau theory,简称TDGL)的元胞动力学方法(Cell Dynamic System,简称CDS)和布朗动力学方法研究了带相反电荷的两种纳米粒子(nanoparticles,简称NPs)掺杂的嵌段共聚物(block copolymers,简称BCPs)混合体系的自组装行为。系统探讨了纳米粒子数目、粒子半径、粒子浸润性质等因素对自组装有序结构的影响,结果表明,纳米粒子的配对效应是诱导体系产生结构转变和形成有序结构的根本原因,同时这一机制还受到纳米粒子半径和数目的影响;而纳米粒子的浸润性质决定了其在聚合物中的分布情况。通过对相图以及演化动力学分析,进一步探讨了各参数对于复合体系结构形成和转变的影响机制。研究结果为聚合物纳米复合材料有序结构的调控提供了新的思路。
In this paper
the Cell Dynamic System (CDS) method based on the Time-Dependent Ginzburg-Landau theory (TDGL) and the Brownian Dynamics method were used to study the self-assembly behavior of block copolymers (BCPs) mixed systems doped with two oppositely charged nanoparticles (NPs). The effects of the number of nanoparticles
particle radius
particle wetting properties and other factors on the self-assembled ordered structure were systematically discussed
and the results showed that the pairing effect of nanoparticles was the fundamental reason for the structural transformation and formation of the ordered structure of the induced system
and this mechanism was also affected by the radius and number of nanoparticles. The wetting properties of nanoparticles determine their distribution in polymers. Through phase diagram and evolutionary dynamics analysis
the influence mechanism of each parameter on the formation and transformation of composite architecture is further discussed. The results of this study provide a new idea for the regulation of the ordered structure of polymer nanocomposites.
纳米粒子嵌段共聚物有序结构含时金兹堡-朗道理论布朗动力学
NanoparticlesBlock copolymersOrdered structureTime-dependent ginzburg-landau theoryBrown dynamics
Diaz, J.; Pinna, M.; Zvelindovsky, A. V.; Pagonabarraga, I.Phase behavior of block copolymer nanocomposite systems. Adv. Theory Simul., 2018, 1(9), 1800066.
Diaz, J.; Pinna, M.; Zvelindovsky, A. V.; Pagonabarraga, I.Hybrid time-dependent ginzburg-landau simulations of block copolymer nanocomposites: nanoparticle anisotropy. Polymers, 2022, 14(9), 1910.
Diaz, J.; Pinna, M.; Zvelindovsky, A.; Pagonabarraga, I.Co-assembly of Janus nanoparticles in block copolymer systems. Soft Matter, 2019, 15(31), 6400–6410.
王文清, 王立权. 两端系留纳米粒子聚合物的分子动力学模拟. 高分子学报, 2023, 54(12), 1935–1942.
Thorkelsson, K.; Bai, P.; Xu, T.Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today, 2015, 10(1), 48–66.
Yan, L. T.; Popp, N.; Ghosh, S. K.; Böker, A.Self-assembly of Janus nanoparticles in diblock copolymers. ACS Nano, 2010, 4(2), 913–920.
Chen, P. Y.; Yang, Y.; Dong, B. J.; Huang, Z. H.; Zhu, G. L.; Cao, Y. F.; Yan, L. T.Polymerization-induced interfacial self-assembly of Janus nanoparticles in block copolymers: reaction-mediated entropy effects, diffusion dynamics, and tailorable micromechanical behaviors. Macromolecules, 2017, 50(5), 2078–2091.
Osipov, M. A.; Gorkunov, M. V.Spatial distribution and nematic ordering of anisotropic nanoparticles in lamellae and hexagonal phases of block copolymers. Eur. Phys. J. E Soft Matter, 2016, 39(12), 126.
Berezkin, A. V.; Kudryavtsev, Y. V.; Gorkunov, M. V.; Osipov, M. A.Ordering of anisotropic nanoparticles in diblock copolymer lamellae: simulations with dissipative particle dynamics and a molecular theory. J. Chem. Phys., 2017, 146(14), 144902.
Bockstaller, M. R.; Thomas, E. L.Proximity effects in self-organized binary particle-block copolymer blends. Phys. Rev. Lett., 2004, 93(16), 166106.
Osipov, M. A.; Ushakova, A. S.Orientational ordering and spatial distribution of Janus nanoparticles in lamellae diblock copolymers. J. Mol. Liq., 2018, 267, 330–336.
Chiu, J. J.; Kim, B. J.; Yi, G.; Bang, J.Kramer, E.; Pine, D.Distribution of nanoparticles in lamellar domains of block copolymers. Macromolecules 2007, 40(9), 3361–3365.
Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J.Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template. Macromolecules, 2006, 39(12), 4108–4114.
Haryono, A.; Binder, W.Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small, 2006, 2(5), 600–611.
Lee, J. Y.; Shou, Z. Y.; Balazs, A. C.Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Phys. Rev. Lett., 2003, 91(13), 136103.
He, L. L.; Zhang, L. X.; Xia, A. G.; Liang, H. J.Effect of nanorods on the mesophase structure of diblock copolymers. J. Chem. Phys., 2009, 130(14), 144907.
He, L. L.; Zhang, L. X.; Liang, H. J.Mono- or bidisperse nanorods mixtures in diblock copolymers. Polymer, 2010, 51(14), 3303–3314.
Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles. Phys. Rev. E, 2018, 97(4), 042706.
Lin, Y.; Böker, A.; He, J. B.; Sill, K.; Xiang, H. Q.; Abetz, C.; Li, X. F.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P.Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005, 434(7029), 55–59.
Lee, J. Y.; Thompson, R. B.; Jasnow, D.; Balazs, A. C.Effect of nanoscopic particles on the mesophase structure of diblock copolymers. Macromolecules, 2002, 35(13), 4855–4858.
Kim, B .; Chiu, J.; Yi, G. R.; Pine, D .; Kramer, E.Nanoparticle-induced phase transitions in diblock-copolymer films. Adv. Mater., 2005, 17(21), 2618–2622.
Lo, C. T.; Lee, B.; Pol, V. G.; Rago, N. D.; Seifert, S.; Winans, R. E.; Thiyagarajan, P.Effect of molecular properties of block copolymers and nanoparticles on the morphology of self-assembled bulk nanocomposites. Macromolecules, 2007, 40(23), 8302–8310.
Halevi, A.; Halivni, S.; Oded, M.; Müller, A. H. E.; Banin, U.; Shenhar, R.Co-assembly of A–B diblock copolymers with B’-type nanoparticles in thin films: Effect of copolymer composition and nanoparticle shape. Macromolecules, 2014, 47(9), 3022–3032.
Huh, J.; Ginzburg, V. V.; Balazs, A. C.Thermodynamic behavior of particle/diblock copolymer mixtures: simulation and theory. Macromolecules, 2000, 33(21), 8085–8096.
Yeh, S. W.; Wei, K. H.; Sun, Y. S.; Jeng, U. S.; Liang, K. S.CdS nanoparticles induce a morphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packed cylinders to a lamellar structure. Macromolecules, 2005, 38(15), 6559–6565.
Park, M. J.; Park, J.; Hyeon, T.; Char, K.Effect of interacting nanoparticles on the ordered morphology of block copolymer/nanoparticle mixtures. J. Polym. Sci. Part B Polym. Phys., 2006, 44(24), 3571–3579.
Hsu, W. C.; Kuo, J. F.; Chen, C. Y.A queous polymerization of acrylamide initiated by cerium(IV) -amino acid chelating agent redox initiators. J. Polym Sci, 1993, 31(1), 267–274.
Cirkel, P. A.; Okada, T.A comparison of mechanical and electrical percolation during the gelling of nafion solutions. Macromolecules, 2000, 33(13), 4921–4925.
Li, W.; Dong, B. J.; Yan, L. T.Janus nanorods in shearing-to-relaxing polymer blends. Macromolecules, 2013, 46(18), 7465–7476.
Dai, X. B.; Chen, P. Y.; Zhu, G. L.; Xu, Z. Y.; Zhang, X. H.; Yan, L. T.Entropy-mediated mechanomutable microstructures and mechanoresponsive thermal transport of nanoparticle self-assembly in block copolymers. J. Phys. Chem. Lett., 2019, 10(24), 7970–7979.
Yamanaka, K.; Takagi, Y.; Inoue, T.Reaction-induced phase separation in rubber-modified epoxy resins. Polymer, 1989, 30(10), 1839–1844.
Buxton, G. A.; Lee, J. Y.; Balazs, A. C.Computer simulation of morphologies and optical properties of filled diblock copolymers. Macromolecules, 2003, 36(25), 9631–9637.
Duncan, T. V.Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci., 2011, 363(1), 1–24.
Thompson, R. B.; Rasmussen, K. Ø.; Lookman, T.Origins of elastic properties in ordered block copolymer/nanoparticle composites. Nano Lett., 2004, 4(12), 2455–2459.
李志海, 潘俊星, 张进军, 孙敏娜, 郭宇琦, 岑建勇, 武海顺. 掩膜诱导的光敏性三组分聚合物混合体系的自组装. 高分子学报, 2017, (5), 768–775.
崔宝宝, 潘俊星, 张进军, 孙敏娜, 郭宇琦, 岑建勇, 武海顺. 纳米粒子驱动受限环境下两嵌段共聚物/均聚物混合体系的自组装行为. 高分子学报, 2017, (6), 959–966.
Lee, J. Y.; Thompson, R. B.; Jasnow, D.; Balazs, A. C.Self-assembly of a binary mixture of particles and diblock copolymers. Faraday Discuss., 2003, 123, 121–131.
Yan, L. T.; Schoberth, H. G.; Boker, A.Large-scale oriented assembly of nanoparticles in diblock copolymer templates under electric fields. Macromol. Chem. Phys., 2009, 210, 1003–1010.
Diaz, J.; Pinna, M.; Zvelindovsky, A. V.; Pagonabarraga., I.Nematic ordering of anisotropic nanoparticles in block copolymers. Adv. Theor. Simul., 2021, 5(1), 2100433.
Diaz, J.; Pinna, M.; Zvelindovsky, A.; Pagonabarraga, I.Nanoparticle anisotropy induces sphere-to-cylinder phase transition in block copolymer melts. Soft Matter, 2022, 18(19), 3638–3643.
Kawakatsu, T.; Kawasaki, K.; Furusaka, M.; Okabayashi, H.; Kanaya, T.Late stage dynamics of phase separation processes of binary mixtures containing surfactants. J. Chem. Phys., 1993, 99(10), 8200–8217.
Guo, Y. Q.; Pan, J. X.; Sun, M. N.; Zhang, J. J.Phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. J. Chem. Phys., 2017, 146(2), 024902.
Osborn, W. R.; Orlandini, E.; Swift, M. R.; Yeomans, J. M.; Banavar, J. R.Lattice Boltzmann study of hydrodynamic spinodal decomposition. Phys. Rev. Lett., 1995, 75(22), 4031–4034.
Gonnella, G.; Orlandini, E.; Yeomans, J. M.Spinodal decomposition to a lamellar phase: Effects of hydrody-namic flow. Phys. Rev. Lett., 1997, 78(9), 1695–1698.
Maurits, N. M.; Zvelindovsky, A. V.; Sevink, G. J. A.; van Vlimmeren, B. A. C.; Fraaije, J. G. E. M.Hydrodynamic effects in three-dimensional microphase separation of block copolymers: dynamic mean-field density functional approach. J. Chem. Phys., 1998, 108(21), 9150–9154.
Cladis, P. E.; van Saarloos, W.; Huse, D. A.; Patel, J. S.; Goodby, J. W.; Finn, P. L.Dynamical test of phase transition order. Phys. Rev. Lett., 1989, 62(15), 1764–1767.
Leibler, L.Theory of microphase separation in block copolymers. Macromolecules, 1980, 13(6), 1602–1617.
Balazs, A. C.; Ginzburg, V. V.; Qiu, F.; Peng, G. W.; Jasnow, D.Multi-scale model for binary mixtures containing nanoscopic particles. J. Phys. Chem. B, 2000, 104(15), 3411–3422.
Pinna, M.; Pagonabarraga, I.; Zvelindovsky, A. V.Modeling of block copolymer/colloid hybrid composite materials. Macromol. Theory Simul., 2011, 20(8), 769–779.
Zhu, Y. J.; Ma, Y. Q.Structure formation in a phase-separating polymer blend with randomly driven particles. J. Chem. Phys., 2003, 118(19), 9023–9029.
Oono, Y.; Puri, S.Computationally efficient modeling of ordering of quenched phases. Phys. Rev. Lett. 1987, 58, 836–839.
Oono, Y.; Puri, S.Study of phase-separation dynamics by use of cell dynamical systems. II. Two-dimensional demonstrations. Phys. Rev. A,1988, 38, 1542–1565.
Oono, Y.; Puri, S.Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Phys. Rev. A, 1988, 38, 434–453.
Oono, Y.; Puri, S.Spinodal decomposition in a Hele-Shaw cell. Phys. Rev. A, 1992, 45(4), 2161–2164.
Roan, J. R.; Shakhnovich, E. I.Phase separation of a binary fluid containing surfactants in a Hele-Shaw cell. Phys. Rev. E, 1999, 59(2), 2109–2125.
Oono, Y.Reply to “Comment on ‘Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling’”. Phys. Rev. E. 1997, 55, 3792.
Shinozaki, A.; Oono, Y.Spinodal decomposition in 3-space. Phys. Rev. E, 1993, 48(4), 2622–2654.
0
浏览量
44
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构