浏览全部资源
扫码关注微信
广西石化资源加工及过程强化技术重点实验室,广西大学化学化工学院,南宁 530004
*张友全,E-mail: zyq1968@163.com
纸质出版日期:2024-08,
收稿日期:2024-02-21,
录用日期:2024-04-09
扫 描 看 全 文
鲍宗源, 欧天凯, 谢新玲, 古文奇, 张友全. 具有凝血作用的原位快速凝胶化双醛淀粉/胶原蛋白水凝胶的制备. 高分子通报, 2024, 37(8), 1095–1107
Bao, Z. Y.; Ou, T. K.; Xie, X. L.; Gu, W. Q. Zhang, Y. Q. Preparation of in-situ rapid gelation dialdehyde starch/collagen hydrogel with coagulation effect. Polym. Bull. (in Chinese), 2024, 37(8), 1095–1107
鲍宗源, 欧天凯, 谢新玲, 古文奇, 张友全. 具有凝血作用的原位快速凝胶化双醛淀粉/胶原蛋白水凝胶的制备. 高分子通报, 2024, 37(8), 1095–1107 DOI: 10.14028/j.cnki.1003-3726.2024.24.051.
Bao, Z. Y.; Ou, T. K.; Xie, X. L.; Gu, W. Q. Zhang, Y. Q. Preparation of in-situ rapid gelation dialdehyde starch/collagen hydrogel with coagulation effect. Polym. Bull. (in Chinese), 2024, 37(8), 1095–1107 DOI: 10.14028/j.cnki.1003-3726.2024.24.051.
凝胶生物质蛋白质双醛淀粉止血
GelsBiomassProteinDialdehyde starchHemostasis
Punjataewakupt, A.; Aramwit, P.Wound dressing adherence: a review. J. Wound Care, 2022, 31(5), 406–423.
Zhang, X.; Wei, P. Y.; Yang, Z. Y.; Liu, Y. S.; Yang, K. R.; Cheng, Y. H.; Yao, H. W.; Zhang, Z. T.Current progress and outlook of nano-based hydrogel dressings for wound healing. Pharmaceutics, 2022, 15(1), 68.
李永三, 徐艳双, 陶磊, 危岩. 基于动态共价键的自愈性水凝胶及其在医学领域的应用. 高分子学报, 2020, 51(1), 30–38.
Su, J. J.; Li, J. K.; Liang, J. H.; Zhang, K.; Li, J. G.Hydrogel preparation methods and biomaterials for wound dressing. Life, 2021, 11(10), 1016.
Zhang, L. J.; Yin, H. X.; Lei, X.; Lau, J. N. Y.; Yuan, M. Z.; Wang, X. Y.; Zhang, F.; Zhou, F.; Qi, S. H.; Shu, B.; Wu, J.A systematic review and meta-analysis of clinical effectiveness and safety of hydrogel dressings in the management of skin wounds. Front. Bioeng. Biotechnol., 2019, 7, 342.
Li, J.; Chen, Q. H.; Wang, J.; Pan, X. Y.; Zhang, J.Insight into bioactive hydrogels for wound healing and drug delivery systems. Curr. Med. Chem., 2021, 28(42), 8692–8710.
刘志华, 林依洋, 陈爽, 韩顺玉, 姜男哲. 仿生天然高分子水凝胶在医用材料方面的应用. 高分子通报, 2024, 37(2), 162–173.
Pan, Z.; Ye, H. J.; Wu, D. C.Recent advances on polymeric hydrogels as wound dressings. APL Bioeng., 2021, 5(1), 011504.
Agbani, E. O.; Hers, I.; Poole, A. W.Platelet procoagulant membrane dynamics: A key distinction between thrombosis and hemostasis?Blood Adv., 2023, 7(8), 1615–1619.
冯茜, 张琨雨, 李睿, 边黎明. 可注射水凝胶及其在再生医学领域的应用. 高分子学报, 2021, 52(1), 1–15.
Shao, M. L.; Shi, Z.; Zhang, X. F.; Zhai, B.; Sun, J. S.Synthesis and properties of biodegradable hydrogel based on polysaccharide wound dressing. Materials, 2023, 16(4), 1358.
Long, L. Y.; Liu, W. Q.; Hu, C.; Yang, L.; Wang, Y. B.Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomater. Sci., 2022, 10(15), 4058–4076.
Kruk, K.; Winnicka, K.Alginates combined with natural polymers as valuable drug delivery platforms. Mar. Drugs, 2022, 21(1), 11.
吴垧妍, 李渊丽, 周娟, 陈敬华. 硫酸软骨素A、C复配型胶原蛋白基止血抗炎水凝胶的制备及性能研究. 高分子通报, 2023, 36(1), 69–81.
Weng, H. J.; Jia, W. B.; Li, M.; Chen, Z. G.New injectable chitosan-hyaluronic acid based hydrogels for hemostasis and wound healing. Carbohydr. Polym., 2022, 294, 119767.
Pan, H.; Fan, D. D.; Duan, Z. G.; Zhu, C. H.; Fu, R. Z.; Li, X.Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing. Mater. Sci. Eng. C Mater. Biol. Appl., 2019, 105, 110118.
Kaczmarek, B.; Nadolna, K.; Owczarek, A.; Michalska-Sionkowska, M.; Sionkowska, A.The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings. Polym. Test., 2019, 78, 106007.
Ali Khan, Z.; Jamil, S.; Akhtar, A.; Mustehsan Bashir, M.; Yar, M.Chitosan based hybrid materials used for wound healing applications—a short review. Int. J. Polym. Mater. Polym. Biomater., 2020, 69(7), 419–436.
Liu, X. X.; Lin, Q. X.; Yan, Y. H.; Peng, F.; Sun, R. C.; Ren, J. L.Hemicellulose from plant biomass in medical and pharmaceutical application: a critical review. Curr. Med. Chem., 2019, 26(14), 2430–2455.
Deng, P. P.; Liang, X.; Chen, F. X.; Chen, Y.; Zhou, J. P.Novel multifunctional dual-dynamic-bonds crosslinked hydrogels for multi-strategy therapy of MRSA-infected wounds. Appl. Mater. Today, 2022, 26, 101362.
Zhao, X. Z.; Gao, J.; Hu, X. Y.; Guo, H. W.; Wang, F. J.; Qiao, Y. S.; Wang, L.Collagen/polyethylene oxide nanofibrous membranes with improved hemostasis and cytocompatibility for wound dressing. Appl. Sci., 2018, 8(8), 1226.
Peng, W.; Li, D.; Dai, K. L.; Wang, Y. X.; Song, P.; Li, H. R.; Tang, P.; Zhang, Z. Y.; Li, Z. Y.; Zhou, Y. C.; Zhou, C. C.Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int. J. Biol. Macromol., 2022, 208, 400–408.
张爱军, 顾慧莹, 闫志勇, 车晓侠, 陈小斌. 不同基质和pH值的腐植酸钠凝胶剂对大鼠皮肤创伤愈合的影响. 腐植酸, 2015, (6), 41.
Xu, Z. L.; Yuan, L.; Liu, Q. S.; Li, D. F.; Mu, C. D.; Zhao, L.; Li, X. Y.; Ge, L. M.Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydr. Polym., 2022, 285, 119237.
Xie, X. F.; Li, X. Y.; Lei, J. F.; Zhao, X.; Lyu, Y. B.; Mu, C. D.; Li, D. F.; Ge, L. M.; Xu, Y. B.Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. Mater. Sci. Eng. C Mater. Biol. Appl., 2020, 116, 111165.
Mu, C. D.; Liu, F.; Cheng, Q. S.; Li, H. L.; Wu, B.; Zhang, G. Z.; Lin, W.Collagen cryogel cross-linked by dialdehyde starch. Macromol. Mater. Eng., 2010, 295(2), 100–107.
Rao, K. M.; Suneetha, M.; Zo, S.; Won, S. Y.; Kim, H. J.; Han, S. S.Injectable nanocomposite hydrogel as wound dressing agent with tunable multifunctional property. Mater. Lett., 2022, 307, 131062.
Zuo, Y.; Li, P.; Tu, R.; Zhao, X.; Yuan, G.; Wu, Y.Optimizing the process conditions for preparing dialdehyde starch with high aldehyde content by acidolysis oxidation based on response surface methodology. Mater. Rev., 2019, 33(1B), 335–341.
纪倩, 宿丹丹, 应慧妍, 陈敬华. 猪皮中胶原蛋白的提取与结构鉴定. 食品研究与开发, 2017, 38(13), 44–49.
张继武, 朱友益, 张强, 林兴盛. 玉米淀粉制备双醛淀粉的试验. 农业工程学报, 2002, 18(3), 135–138.
Qu, J.; Zhao, X.; Ma, P. X.; Guo, B. L.pH-Responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater., 2017, 58, 168–180.
Sweeney, I. R.; Miraftab, M.; Collyer, G.Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings: II. Pilot scale development. Carbohydr. Polym., 2014, 102, 920–927.
Delgado, A. A. A.; Sethio, D.; Munar, I.; Aviyente, V.; Kraka, E.Local vibrational mode analysis of ion-solvent and solvent-solvent interactions for hydrated Ca2+ clusters. J. Chem. Phys., 2020, 153(22), 224303.
Qin, P. H.; Zhang, W.; Lu, W. C.Theoretical study of hydrated Ca2+-amino acids (glycine, threonine and phenylalanine) clusters. Comput. Theor. Chem., 2013, 1021, 164–170.
Yamaguchi, S.; Takeuchi, T.; Ito, M.; Kokubo, T.CaO-B2O3-SiO2 glass fibers for wound healing. J. Mater. Sci. Mater. Med., 2022, 33(2), 15.
Grabska-Zielińska, S.; Sionkowska, A.; Reczyńska, K.; Pamuła, E.Physico-chemical characterization and biological tests of collagen/silk fibroin/chitosan scaffolds cross-linked by dialdehyde starch. Polymers, 2020, 12(2), E372.
张雯. 基于胶原蛋白/细菌纤维素多孔微球的制备及药物吸附释放行为研究. 西安: 陕西科技大学, 2019.
刘雯恩, 周艳芳, 范志强, 李玉玲, 甘兵, 彭新生. 优化Ⅰ型胶原蛋白的纯化工艺. 精细化工, 2019, 36(5): 850–855.
马也, 赵磊磊, 高建萍, 孔英俊, 张贵锋, 刘涛. 胶原海绵与脱细胞基质在大鼠体内的降解过程. 生物学杂志, 2020, 37(5), 112–116.
Wang, P. H.; Huang, B. S.; Horng, H. C.; Yeh, C. C.; Chen, Y. J.Wound healing. J. Chin. Med. Assoc., 2018, 81(2), 94–101.
宗杰. 防海水浸泡胶原蛋白复合医用敷料研究. 上海: 上海海洋大学, 2016.
Zou, C. Y.; Lei, X. X.; Hu, J. J.; Jiang, Y. L.; Li, Q. J.; Song, Y. T.; Zhang, Q. Y.; Jesse, L. L.; Xie, H. Q.Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact. Mater., 2022, 16, 388–402.
Yan, X. Y.; Chen, Y. N.; Dan, N. H.; Dan, W. H.A novel thermosensitive growth-promoting collagen fibers composite hemostatic gel. J. Mater. Chem. B, 2022, 10(21), 4070–4082.
Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J.Different schiff bases-structure, importance and classification. Molecules, 2022, 27(3), 787.
0
浏览量
54
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构