浏览全部资源
扫码关注微信
1.武汉工程大学材料科学与工程学院,武汉 430205
2.华中科技大学材料科学与工程学院,武汉 430074
*吴江渝,E-mail: wujy@wit.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-05-31,
收稿日期:2024-03-19,
录用日期:2024-04-21
移动端阅览
董桂芳, 周展鹏, 胡梦亭, 曾小平, 王大威, 王玮, 吴江渝. 基于聚N-异丙基丙烯酰胺的光热响应水凝胶的制备与表征. 高分子通报, 2024, 37(9), 1271–1279
Dong, G. F.; Zhou, Z. P.; Hu, M. T.; Zeng, X. P.; Wang, D. W.; Wang, W.; Wu, J. Y. Preparation and characterization of photothermal response hydrogels based on poly(N-isopropylacrylamide). Polym. Bull. (in Chinese), 2024, 37(9), 1271–1279
董桂芳, 周展鹏, 胡梦亭, 曾小平, 王大威, 王玮, 吴江渝. 基于聚N-异丙基丙烯酰胺的光热响应水凝胶的制备与表征. 高分子通报, 2024, 37(9), 1271–1279 DOI: 10.14028/j.cnki.1003-3726.2024.24.077.
Dong, G. F.; Zhou, Z. P.; Hu, M. T.; Zeng, X. P.; Wang, D. W.; Wang, W.; Wu, J. Y. Preparation and characterization of photothermal response hydrogels based on poly(N-isopropylacrylamide). Polym. Bull. (in Chinese), 2024, 37(9), 1271–1279 DOI: 10.14028/j.cnki.1003-3726.2024.24.077.
通过一锅法制备了含有氧化石墨烯(GO)的聚
N
-异丙基丙烯酰胺(PNIPAM)/聚乙烯醇(PVA)光热响应纳米复合水凝胶,并对产物的形貌、结构及性能进行了表征。研究了PVA对PNIPAM/PVA水凝胶透光率的影响,以及GO含量对PNIPAM/PVA/GO水凝胶力学性能和光热响应的影响。结果表明,在PNIPAM水凝胶中引入PVA后,并未影响低临界溶解温度(LCST),LCST值仍为32 ℃;扫描电子显微镜表明GO/PNIPAM/PVA纳米复合水凝胶结构紧密,孔洞大小均一;当GO含量为NIPAM质量的0.89%时,制备的GO/PNIPAM/PVA水凝胶具有最佳力学性能,拉伸强度为40.1 kPa,断裂伸长率可达335.6%;近红外光(NIR)照射GO含量为NIPAM质量的1.11%的GO/PNIPAM/PVA水凝胶150 s,其温度能从17.2 ℃升到42.5 ℃,具有优异的光热性能。
Poly(
N
-isopropylacrylamide) (PNIPAM)/poly(vinyl alcohol) (PVA) photothermal responsive nanocomposite hydrogels containing graphene oxide (GO) were prepared by a one-pot method
and the morphology
structure
and properties of the products were characterized in this study. The effect of PVA on the transmittance of PNIPAM/PVA hydrogel and the effect of GO content on the mechanical properties and photothermal response of PNIPAM/PVA/GO hydrogel were studied. The results showed that the introduction of PVA into PNIPAM hydrogel did not affect its lower critical solution temperature (LCST) value
and the LCST value was still 32 ℃. Scanning electron microscopy results showed that the GO/PNIPAM/PVA nanoco
mposite hydrogel had a compact structure and uniform pore size. When the GO content is 0.89% of the mass of NIPAM
the prepared GO/PNIPAM/PVA hydrogel has the optimal mechanical properties
the tensile strength is 40.1 kPa
and the elongation at break can reach 335.6%. The GO/PNIPAM/PVA hydrogel with GO content of 1.11% of NIPAM mass was irradiated by near-infrared light (NIR) for 150 s
and its temperature could rise from 17.2 ℃ to 42.5 ℃
showing excellent photothermal performance.
N-异丙基丙烯酰胺聚乙烯醇氧化石墨烯光热响应
N-isopropylacrylamidePoly(vinyl alcohol)Graphene oxidePhotothermal response
Liu, X. J.; Gao, M.; Chen, J. Y.; Guo, S.; Zhu, W.; Bai, L. C.; Zhai, W. Z.; Du, H. J.; Wu, H.; Yan, C. Z.; Shi, Y. S.; Gu, J. W.; Qi, H. J.; Zhou, K.Recent advances in stimuli-responsive shape-morphing hydrogels. Adv. Funct. Mater., 2022, 32(39), 2203323.
Jiang, Y. H.; Wang, Y.; Li, Q.; Yu, C.; Chu, W. L.Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem., 2020, 27(16), 2631–2657.
Gu, R. T.; Zhou, H. Q.; Zhang, Z. R.; Lv, Y.; Pan, Y. S.; Li, Q. Q.; Shi, C. F.; Wang, Y. H.; Wei, L. L.Research progress related to thermosensitive hydrogel dressings in wound healing: a review. Nanoscale Adv., 2023, 5(22), 6017–6037.
Li, L. X.; He, Y. P.; Zheng, X. D.; Yi, L.; Nian, W. Q.Progress on preparation of pH/temperature-sensitive intelligent hydrogels and applications in target transport and controlled release of drugs. Int. J. Polym. Sci., 2021, 2021, 1340538.
Chang, R. X.; Wang, X. M.; Li, X.; An, H.; Qin, J. L.Self-activated healable hydrogels with reversible temperature responsiveness. ACS Appl. Mater. Interfaces, 2016, 8(38), 25544–25551.
Li, X.; Li, M. H.; Tang, L. S.; Shi, D. W.; Lam, E.; Bae, J.3D shape morphing of stimuli-responsive composite hydrogels. Mater. Chem. Front., 2023, 7(23), 5989–6034.
Zhang, J. T.; Bhat, R.; Jandt, K. D.Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater., 2009, 5(1), 488–497.
Zhang, J. T.; Cheng, S. X.; Zhuo, R. X.Poly(vinyl alcohol)/poly(N-isopropylacrylamide) semi-interpene-trating polymer network hydrogels with rapid response to temperature changes. Colloid Polym. Sci., 2003, 281(6), 580–583.
Yu, Y. Q.; Liu, Y. P.; Kong, Y. Y.; Zhang, E. C.; Jia, F. Q.; Li, S. H.Synthesis and characterization of temperature-sensitive poly(N-isopropylacryamide) hydrogel with comonomer and semi-IPN material. Polym. Plast. Technol. Eng., 2012, 51(8), 854–860.
Zhang, J. J.; Zheng, L. T.; Wu, Z. J.; Wang, L.; Li, Y. J.Thermoresponsive bilayer hydrogel with switchable bending directions as soft actuator. Polymer, 2022, 253(22), 124998.
Pan, Y. Z.; Bao, H. Q.; Sahoo, N. G.; Wu, T. F.; Li, L.Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater., 2011, 21(14), 2754–2763.
Sun, S. T.; Wu, P. Y.A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J. Mater. Chem., 2011, 21(12), 4095–4097.
Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H.Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater., 2012, 22(19), 4017–4022.
阿尔普丁·艾尼娃尔, 王鸿月, 孟小琪, 何新宇, 杨霜, 余海溶, 左芳. PNIPAM/锂藻土/GO近红外光响应水凝胶的制备及其应用初探. 精细化工, 2021, 38(4), 743–748.
Fan, P.; Fan, Z.; Huang, F. L.; Yang, J. T.; Chen, F.; Fei, Z. D.; Zhong, M. Q.GO@Polyaniline nanorod array hierarchical structure: a photothermal agent with high photothermal conversion efficiency for fast near-infrared responsive hydrogels. Ind. Eng. Chem. Res., 2019, 58(9), 3893–3901.
Wang, Q.; Shao, J. J.; Xu, J.; Dong, F. P.; Xiong, Y. Z.; Chen, Q. L.In-situ formed cyclodextrin-functionalized graphene oxide/poly(N-isopropylacrylamide) nano-composite hydrogel as an recovery adsorbent for phenol and microfluidic valve. J. Colloid Interface Sci., 2022, 607(Pt 1), 253–268.
Cheng, Y.; Ren, K.; Huang, C.; Wei, J.Self-healing graphene oxide-based nanocomposite hydrogels serve as near-infrared light-driven valves. Sens. Actuat. B Chem., 2019, 298, 126908.
Lv, J.; Kong, C. C.; Yang, C.; Yin, L.; Jeerapan, I.; Pu, F. Z.; Zhang, X. J.; Yang, S.; Yang, Z. M.Wearable, stable, highly sensitive hydrogel-graphene strain sensors. Beilstein J. Nanotechnol., 2019, 10, 475–480.
Zhang, Y. F.; Du, F. P.; Chen, L.; Yeung, K. W.; Dong, Y. Q.; Law, W. C.; Tsui, G. C. P.; Tang, C. Y.Supramolecular ionic polymer/carbon nanotube composite hydrogels with enhanced electromechanical performance. Nanotechnol. Rev., 2020, 9(1), 478–488.
Zhao, C. X.; Guo, M.; Mao, J.; Li, Y. T.; Wu, Y. P.; Guo, H.; Xiang, D.; Li, H.Self-healing, stretchable, temperature-sensitive and strain-sensitive hydrogel-based flexible sensors. Chinese J. Polym. Sci., 2023, 41(3), 334–344.
0
浏览量
19
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构