浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院,上海市先进聚合物材料重点实验室,上海 200237
*张丹枫,E-mail: zdf93102@ecust.edu.cn
纸质出版日期:2024-09-20,
网络出版日期:2024-06-03,
收稿日期:2024-03-25,
录用日期:2024-04-23
移动端阅览
张丹枫, 黄海林, 高春旋. 乙丙共聚型聚合物的制备与结构表征. 高分子通报, 2024, 37(9), 1243–1253
Zhang, D. F.; Huang, H. L.; Gao, C. X. Preparation and structure characterization of ethylene-propylene rubber-type polymers. Polym. Bull. (in Chinese), 2024, 37(9), 1243–1253
张丹枫, 黄海林, 高春旋. 乙丙共聚型聚合物的制备与结构表征. 高分子通报, 2024, 37(9), 1243–1253 DOI: 10.14028/j.cnki.1003-3726.2024.24.082.
Zhang, D. F.; Huang, H. L.; Gao, C. X. Preparation and structure characterization of ethylene-propylene rubber-type polymers. Polym. Bull. (in Chinese), 2024, 37(9), 1243–1253 DOI: 10.14028/j.cnki.1003-3726.2024.24.082.
后过渡金属催化剂以其独特的“链行走和链伸直”机理在催化
α
-烯烃聚合时可得到结构独特与性能优异的聚烯烃弹性体。本文以经典的
α
-二亚胺镍(Ⅱ)配合物
(C1~C6)
为催化剂,在倍半乙基氯化铝(EASC)作用下,催化丙烯聚合,制得了结构为乙丙共聚型聚合物(EPR-型聚合物)。系统考察了催化剂用量、
n
(Al)/
n
(Ni)、丙烯压力、聚合时间、聚合温度、溶剂和催化剂结构对丙烯聚合的影响,得到了最优化的聚合条件。通过核磁共振波谱(NMR)、红外光谱(IR)、凝胶渗透色谱(GPC)、差示扫描量热(DSC)和热重分析(TGA)对所得聚合物的微观结构、热性能进行了分析与表征。结果表明,
α
-二亚胺镍(Ⅱ)配合物的催化活性最高可达6.33×10
5
g/(mol·h),所得聚合物的分子量范围为6.27×10
4
~40.75×10
4
g/mol,1
3-成键率为21%~35% (mol),玻璃化温度为–28.95~–40.57 ℃,分解温度在400 ℃以上。
Late-transition metal catalysts can be applied in the polymerization of
α
-olefins with a unique “chain-running and chain-straightening” mechanism to produce polyolefin elastomers with special structures and excellent properties. In this
study
ethylene-propylene rubber (EPR)-type polymers were prepared by polymerization of propylene with classical
α
-diimine nickel(II) complexes
(C1~C6)
in the presence of ethylaluminum sesquichloride (EASC). The effects of catalyst dosage
n
(Al)/
n
(Ni)
propylene pressure
polymerization time
polymerization temperature
solvent
and structures of the catalysts on the polymerization were investigated systematically
and the optimal polymerization conditions were obtained. The microstructures and thermal properties of the obtained polymers were characterized by using nuclear magnetic resonance spectroscopy (NMR)
infrared spectrum (IR)
gel permeation chromatography (GPC)
differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The highest catalytic activity of
α
-diimine nickel(II) complexes could reach 6.33×10
5
g/(mol·h)
the molecular weight of EPR-type polymers was in the range of 6.27×10
4
–40.75×10
4
g/mol
the 1
3-enchainment content was 21% to 35% (mol)
the glass transition temperature (
T
g
) was from –28.95 ℃ to –40.57 ℃
the decomposition temperature exceeded 400 ℃.
后过渡金属催化剂α-二亚胺Ni(Ⅱ)配合物丙烯EPR-型的聚合物
Late-transition metal catalystα-diimine Ni(Ⅱ) complexPropylene polymerizationEPR-type polymer
Stürzel, M.; Mihan, S.; Mülhaupt, R.From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev., 2016, 116(3), 1398–1433.
Baier, M. C.; Zuideveld, M. A.; Mecking, S.Post-metallocenes in the industrial production of polyolefins. Angew. Chem. Int. Ed., 2014, 53(37), 9722–9744.
Thakur, V.; Li Pi Shan, C.; Li, G.; Han, T.; Den Doelder, J.Sponge EPDM by design. Plast. Rubber Compos., 2019, 48(1), 32–41.
Leone, G.; Zanchin, G.; Di Girolamo, R.; De Stefano, F.; Lorber, C.; De Rosa, C.; Ricci, G.; Bertini, F.Semibatch terpolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene: heterogeneous high-ethylene EPDM thermoplastic elastomers. Macromole-cules, 2020, 53(14), 5881–5894.
Kumar, J.; Kumar, A.; Maurya, A. K.; Gupta, H. S.; Singh, S. P.; Sharma, C.Utilization of ananas comosus crown residue husk as a sustainable strength additive for EPR/LDPE blend composites. ACS Omega, 2024, 9(2), 2740–2751.
崔小明. 我国乙丙橡胶市场发展现状分析. 中国橡胶, 2022, 38(11), 31–35.
Zohuri, G. H.; Sadegvandi, F.; JamJah, R.; Ahmadjo, S.; Nekoomanesh, M.; Bigdelli, E.Copolymerization of ethylene/propylene elastomer using high-activity Ziegle-Natta catalyst system of MgCl2 (ethoxide type)/EB/PDMS/TiCl4/PMT. J. Appl. Polym. Sci., 2002, 84(4), 785–790.
Zohuri, G. H.; Mortazavi, M. M.; Jamjah, R.; Ahmadjo, S.Copolymerization of ethylene-propylene using high-activity bi-supported Ziegler-Natta TiCl4 catalyst. J. Appl. Polym. Sci., 2004, 93(6), 2597–2605.
Cuomo, C.; Milione, S.; Grassi, A.Olefin polymerization catalyzed by amide vanadium(IV) complexes: the stereo- and regiochemistry of propylene insertion. J. Polym. Sci. A Polym. Chem., 2006, 44(10), 3279–3289.
Fan, Z. Q.; Deng, J.; Zuo, Y. M.; Fu, Z. S.Influence of copolymerization conditions on the structure and properties of polyethylene/polypropylene/poly(ethylene-co-propylene) in-reactor alloys synthesized in gas-phase with spherical Ziegler-Natta catalyst. J. Appl. Polym. Sci., 2006, 102(3), 2481–2487.
Jiang, T.; Du, W.; Zhang, L.; Song, X. F.; Zhang, G. Y.; Ning, Y. N.Copolymerization of ethylene and propylene catalyzed by novel magnesium chloride supported, vanadium-based catalysts. J. Appl. Polym. Sci., 2009, 111(5), 2625–2629.
Khan, A.; Guo, Y. T.; Zhang, Z.; Ali, A.; Fu, Z. S.; Fan, Z. Q.Kinetics of short-duration ethylene-propylene copolymerization with MgCl2-supported Ziegler-Natta catalyst: differentiation of active centers on the external and internal surfaces of the catalyst particles. J. Appl. Polym. Sci., 2018, 135(12), 46030..
Pires, M.; Mauler, R. S.; Liberman, S. A.Structural characterization of reactor blends of polypropylene and ethylene-propylene rubber. J. Appl. Polym. Sci., 2004, 92(4), 2155–2162.
Fregonese, D.; Mortara, S.; Bresadola, S.Ziegler–Natta MgCl2-supported catalysts: relationship between titanium oxidation states distribution and activity in olefin polymerization. J. Mol. Catal. A Chem., 2001, 172(1-2), 89–95.
Liu, B. P.; Nitta, T.; Nakatani, H.; Terano, M.Precise arguments on the distribution of stereospecific active sites on MgCl2-supported ziegler-natta catalysts. Macromol. Symp., 2004, 213(1), 7–18.
Yang, H. R.; Zhang, L. T.; Zang, D. D.; Fu, Z. S.; Fan, Z. Q.Effects of alkylaluminum as cocatalyst on the active center distribution of 1-hexene polymerization with MgCl2-supported Ziegler-Natta catalysts. Catal. Commun., 2015, 62, 104–106.
Yang, P. J.; Fu, Z. S.; Fan, Z. Q.1-Hexene polymerization with supported Ziegler-Natta catalyst: correlation between catalyst particle fragmentation and active center distribution. Mol. Catal., 2018, 447, 13–20.
Fan, W.; Leclerc, M. K.; Waymouth, R. M.Alternating stereospecific copolymerization of ethylene and propylene with metallocene catalysts. J. Am. Chem. Soc., 2001, 123(39), 9555–9563.
Kravchenko, R.; Waymouth, R. M.Ethylene-propylene copolymerization with 2-arylindene zirconocenes. Macromolecules, 1998, 31(1), 1–6.
Kolodka, E.; Wang, W. J.; Zhu, S. P.; Hamielec, A. E.Copolymerization of propylene with poly(ethylene-co-propylene) macromonomer and branch chain-length dependence of rheological properties. Macromolecules, 2002, 35(27), 10062–10070.
Wang, D. Q.; Tomasi, S.; Razavi, A.; Ziegler, T.Why do C1-symmetric ansa-zirconocene catalysts produce lower molecular weight polymers for ethylene/propylene copolymerization than for ethylene/propylene homopolymerization?Organometallics, 2008, 27(12), 2861–2867.
Wondimagegn, T.; Wang, D. Q.; Razavi, A.; Ziegler, T.Computational design of C2-symmetric metallocene-based catalysts for the synthesis of high molecular weight polymers from ethylene/propylene copoly-merization. Organometallics, 2008, 27(24), 6434–6439.
Nifant’ev, I. E.; Ivchenko, P. V.; Bagrov, V. V.; Churakov, A. V.; Chevalier, R.Novel effective racemoselective method for the synthesis of ansa-zirconocenes and its use for the preparation of C2-symmetric complexes based on 2-methyl-4-aryltetrahydro(s)indacene as catalysts for isotactic propylene polymerization and ethylene-propylene copolymerization. Organometallics, 2012, 31(11), 4340–4348.
Ali, A.; Akram, M. A.; Guo, Y. T.; Wu, H. F.; Liu, W. C.; Khan, A.; Liu, X. Y.; Fu, Z. S.; Fan, Z. Q.Ethylene–propylene copolymerization and their terpolymerization with dienes using ansa-zirconocene catalysts activated by borate/alkylaluminum. J. Macromol. Sci. Part A, 2020, 57(2), 156–164.
Johnson, L. K.; Killian, C. M.; Brookhart, M.New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J. Am. Chem. Soc., 1995, 117(23), 6414–6415.
Ittel, S. D.; Johnson, L. K.; Brookhart, M.Late-metal catalysts for ethylene homo- and copolymerization. Chem. Rev., 2000, 100(4), 1169–1204.
Rhinehart, J. L.; Brown, L. A.; Long, B. K.A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc., 2013, 135(44), 16316–16319.
Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L.Palladium and nickel catalyzed chain walking olefin polymerization and copolymerization. ACS Catal., 2016, 6(1), 428–441.
Mu, H. L.; Pan, L.; Song, D. P.; Li, Y. S.Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties. Chem. Rev., 2015, 115(22), 12091–12137.
Wang, Y.; Gao, R.; Gou, Q. Q.; Lai, J. J.; Zhang, R. D.; Li, X. Y.; Guo, Z. F.Developments in late transition metal catalysts with high thermal stability for ethylene polymerization: a crucial aspect from laboratory to industrialization. Eur. Polym. J., 2022, 181, 111693.
Guo, L. H.; Zou, C.; Dai, S. Y.; Chen, C. L.Direct synthesis of branched carboxylic acid functionalized poly(1-octene) by α-diimine palladium catalysts. Polymers, 2017, 9(4), 122.
Vaccarello, D.; O’Connor, K. S.; Iacono, P.; Rose, J. M.; Cherian, A. E.; Coates, G. W.Synthesis of semicrystalline polyolefin materials: precision methyl branching via stereoretentive chain walking. J. Am. Chem. Soc., 2018, 140(20), 6208–6211.
Mishra, A.; Patil, H. R.; Gupta, V.Progress in propylene homo- and copolymers using advanced transition metal catalyst systems. New J. Chem., 2021, 45(24), 10577–10588.
Zhang, D. F.; Nadres, E. T.; Brookhart, M.; Daugulis, O.Synthesis of highly branched polyethylene using “sandwich” (8-p-tolyl naphthyl α-diimine)nickel(II) catalysts. Organometallics, 2013, 32(18), 5136–5143.
Zou, W. P.; Chen, C. L.Influence of backbone substituents on the ethylene (co)polymerization properties of α-diimine Pd(II) and Ni(II) catalysts. Organometallics, 2016, 35(11), 1794–1801.
Dai, S. Y.; Li, S. K.; Xu, G. Y.; Wu, C.; Liao, Y. D.; Guo, L. H.Flexible cycloalkyl substituents in insertion polymerization with α-diimine nickel and palladium species. Polym. Chem., 2020, 11(7), 1393–1400.
Cherian, A. E.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W.A C2-symmetric, living alpha-diimine Ni(II) catalyst: regioblock copolymers from propylene. J. Am. Chem. Soc., 2005, 127(40), 13770–13771.
Fang, J.; Sui, X. L.; Li, Y. G.; Chen, C. L.Synthesis of polyolefin elastomers from unsymmetrical α-diimine nickel catalyzed olefin polymerization. Polym. Chem., 2018, 9(30), 4143–4149.
Liao, H.; Gao, J.; Zhong, L.; Gao, H. Y.; Wu, Q.Regioselective polymerizations of α-olefins with an α-diamine nickel catalyst. Chineses J. Polym. Sci., 2019, 37(10), 959–965.
Wang, B. B.; Liu, H.; Zhang, C. Y.; Tang, T.; Zhang, X. Q.Propylene homopolymerization and copolymerization with ethylene by acenaphthene-based α-diimine nickel complexes to access EPR-like elastomers. Polym. Chem., 2021, 12(43), 6307–6318.
Pappalardo, D.; Mazzeo, M.; Antinucci, S.; Pellecchia, C.Some evidence of a dual stereodifferentiation mechanism in the polymerization of propene by α-diimine nickel catalysts. Macromolecules, 2000, 33(26), 9483–9487.
Fan, H. J.; Liao, Y. D.; Dai, S. Y.Propylene poly-merization and copolymerization with polar monomers facilitated by flexible cycloalkyl substituents in α-diimine systems. Polymer, 2022, 254, 125076.
袁建超, 王学虎, 刘玉凤, 梅铜简. α-二亚胺Ni(Ⅱ)配合物/二乙基氯化铝催化乙烯聚合的研究. 西北师范大学学报(自然科学版), 2011, 47(3), 65–69.
Zhu, L.; Yu, H. J.; Wang, L.; Xing, Y. S.Ethylene/1-octene copolymerization catalyzed by α-diimine-Ni(II) complex and EPR study of the catalytic system. Mater. Today Commun., 2021, 29, 102801.
Dudowicz, J.; Freed, K. F.; Douglas, J. F.The glass transition temperature of polymer melts. J. Phys. Chem. B, 2005, 109(45), 21285–21292.
Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M.Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules, 2000, 33(7), 2320–2334.
Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M.Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J. Am. Chem. Soc., 1998, 120(5), 888–899.
Galland, G. B.; Da Silva, L. P.; Dias, M. L.; Crossetti, G. L.; Ziglio, C. M.; Filgueiras, C. A. L.13C NMR determination of the microstructure of polypropylene obtained with the DADNi(NCS)2/methylaluminoxane catalyst system. J. Polym. Sci. A Polym. Chem., 2004, 42(9), 2171–2178.
Lipponen, S.; Lahelin, M.; Seppälä, J.Phenylsilane; unreactive group in the metallocene/MAO catalyzed copolymerization of propylene and 7-octenyldimethyl-phenylsilane, reactive group in melt blending with microsilica filler. Eur. Polym. J., 2009, 45(4), 1179–1189.
Ruiz-Orta, C.; Fernandez-Blazquez, J. P.; Anderson-Wile, A. M.; Coates, G. W.; Alamo, R. G.Isotactic polypropylene with (3, 1) chain-walking defects: chara-cterization, crystallization, and melting behaviors. Macromolecules, 2011, 44(9), 3436–3451.
Carman, C. J.; Harrington, R. A.; Wilkes, C. E.Monomer sequence distribution in ethylene-propylene rubber measured by 13C NMR. 3. Use of reaction probability model. Macromolecules, 1977, 10(3), 536–544.
0
浏览量
36
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构